RESUMO
Since previous studies have suggested that the RNAs of human endogenous retrovirus (HERV) might be involved in regulating innate immunity, it is important to investigate the HERV transcriptome patterns in innate immune cell types such as CD14 + monocytes. Using single cell RNA-seq datasets from resting or stimulated PBMCs mapped to 3,220 known discrete autonomous proviral HERV loci, we found individual-specific variation in HERV transcriptomes between HERV loci in CD14 + monocytes. Analysis of paired datasets from the same individual that were cultured in vitro with LPS or without (i.e. control) revealed 36 HERV loci in CD14 + monocytes that were detected only after activation. To extend our analysis to in vivo activated CD14 + monocytes, we used two scRNA-seq datasets from studies that had demonstrated activation of circulating CD14 + monocytes in patients with physical trauma or patients hospitalized with COVID-19 infections. For direct comparison between the trauma and COVID-19 datasets, we first analyzed 1.625 billion sequence reads from a composite pangenome control of 21 normal individuals. Comparison of the sequence read depth of HERV loci in the trauma or COVID-19 samples to the pangenome control revealed that 39 loci in the COVID-19 and 11 HERV loci in the trauma samples were significantly different (Mann-Whitney U test), with 9 HERV loci shared between the COVID-19 and trauma datasets. The capacity to compare HERV loci transcriptome patterns in innate immune cells, like CD14 + monocytes, across different pathological conditions will lead to greater understanding of the physiological role of HERV expression in health and disease.
Assuntos
COVID-19 , Retrovirus Endógenos , Receptores de Lipopolissacarídeos , Monócitos , SARS-CoV-2 , Transcriptoma , Ferimentos e Lesões , Humanos , Retrovirus Endógenos/genética , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , Receptores de Lipopolissacarídeos/genética , Monócitos/imunologia , Monócitos/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Ferimentos e Lesões/virologia , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/genética , Imunidade Inata/genética , Masculino , Feminino , Loci GênicosRESUMO
Recent research has highlighted the essential role of the microbiome in maintaining skeletal muscle physiology. The microbiota influences muscle health by regulating lipid metabolism, protein synthesis, and insulin sensitivity. However, metabolic disturbances such as obesity can lead to dysbiosis, impairing muscle function. Time-restricted feeding (TRF) has been shown to mitigate obesity-related muscle dysfunction, but its effects on restoring healthy microbiomes remain poorly understood. This study utilizes 16S microbiome analysis and bacterial supplementation to investigate the bacterial communities influenced by TRF that may benefit skeletal muscle physiology. In wild-type and obese Drosophila models (axenic models devoid of natural microbial communities), the absence of microbiota influence muscle performance and metabolism differently. Specifically, axenic wild-type Drosophila exhibited reduced muscle performance, higher glucose levels, insulin resistance, ectopic lipid accumulation, and decreased ATP levels. Interestingly, in obese Drosophila (induced by a high-fat diet or predisposed obesity mutant Sk2), the absence of microbiota improved muscle performance, lowered glucose levels, reduced insulin resistance, and increased ATP levels. TRF was found to modulate microbiota composition, notably increasing Acetobacter pasteurianus (AP) and decreasing Staphylococcus aureus (SA) in both obesity models. Supplementation with AP improved muscle performance and reduced glucose and insulin resistance, while SA supplementation had the opposite effect. This study provides novel insights into the complex interactions between TRF, microbiota, and skeletal muscle physiology in different Drosophila models.
RESUMO
Gut microbiota influence anti-tumor immunity, often by producing immune-modulating metabolites. However, microbes consume a variety of metabolites that may also impact host immune responses. We show that tumors grow unchecked in the omenta of microbe-replete mice due to immunosuppressive Tregs. By contrast, omental tumors in germ-free, neomycin-treated mice or mice colonized with altered Schaedler's flora (ASF) are spontaneously eliminated by CD8+ T cells. These mice lack Proteobacteria capable of arginine catabolism, causing increases in serum arginine that activate the mammalian target of the rapamycin (mTOR) pathway in Tregs to reduce their suppressive capacity. Transfer of the Proteobacteria, Escherichia coli (E. coli), but not a mutant unable to catabolize arginine, to ASF mice reduces arginine levels, restores Treg suppression, and prevents tumor clearance. Supplementary arginine similarly decreases Treg suppressive capacity, increases CD8+ T cell effectiveness, and reduces tumor burden. Thus, microbial consumption of arginine alters anti-tumor immunity, offering potential therapeutic strategies for tumors in visceral adipose tissue.
Assuntos
Arginina , Linfócitos T CD8-Positivos , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Omento , Linfócitos T Reguladores , Animais , Arginina/metabolismo , Camundongos , Linfócitos T Reguladores/imunologia , Microbioma Gastrointestinal/imunologia , Linfócitos T CD8-Positivos/imunologia , Omento/imunologia , Serina-Treonina Quinases TOR/metabolismo , Proteobactérias , Escherichia coli/imunologia , Neoplasias/imunologia , FemininoRESUMO
Bacteroides vulgatus and Bacteroides uniformis are known to be abundant in the human fecal microbial community. Although these strains typically remain stable over time in humans, disruption of this microbial community following antibiotics resulted in the transient change to new strains suggesting that a complex, dynamic strain community exists in humans. To further study the selection of dominant fecal microbial strains from the gastrointestinal tract (GIT) community, we analyzed three longitudinal metagenomic sequencing data sets using BLAST+ to identify genes encoding Bacteroidales-specific antimicrobial proteins (BSAP) that have known functions to restrict species-specific replication of B. uniformis (BSAP-2) or B. vulgatus (BSAP-3) and have been postulated to provide a competitive advantage in microbial communities. In the HMP (Human Microbiome Project) data set, we found fecal samples from individuals had B. vulgatus or B. uniformis with either complete or deleted BSAP genes that did not change over time. We also examined fecal samples from two separate longitudinal data sets of individuals who had been given either single or multiple antibiotics. The BSAP gene pattern from most individuals given either single or multiple antibiotics recovered to be the same as the pre-antibiotic strain. However, in a few individuals, we found incomplete BSAP-3 genes at early times during the recovery that were replaced by B. vulgatus with the complete BSAP-3 gene, consistent with the function of the BSAP to specifically restrict Bacteroides spp. The results of these studies provide insights into the fluxes that occur in the Bacteroides spp. GIT community following perturbation and the dynamics of the selection of a dominant fecal strain of Bacteroides spp.
RESUMO
Along with the standard therapies for glioblastoma, patients are commonly prescribed trimethoprim-sulfamethoxazole (TMP-SMX) and dexamethasone for preventing infections and reducing cerebral edema, respectively. Because the gut microbiota impacts the efficacy of cancer therapies, it is important to understand how these medications impact the gut microbiota of patients. Using mice that have been colonized with human microbiota, this study sought to examine how TMP-SMX and dexamethasone affect the gut microbiome. Two lines of humanized microbiota (HuM) Rag1-/- mice, HuM1Rag and HuM2Rag, were treated with either TMP-SMX or dexamethasone via oral gavage once a day for a week. Fecal samples were collected pre-treatment (pre-txt), one week after treatment initiation (1 wk post txt), and three weeks post-treatment (3 wk post txt), and bacterial DNA was analyzed using 16S rRNA-sequencing. The HuM1Rag mice treated with TMP-SMX had significant shifts in alpha diversity, beta diversity, and functional pathways at all time points, whereas in the HuM2Rag mice, it resulted in minimal changes in the microbiome. Likewise, dexamethasone treatment resulted in significant changes in the microbiome of the HuM1Rag mice, whereas the microbiome of the HuM2Rag mice was mostly unaffected. The results of our study show that routine medications used during glioblastoma treatment can perturb gut microbiota, with some microbiome compositions being more sensitive than others, and these treatments could potentially affect the overall efficacy of standard-of-care therapy.
RESUMO
BACKGROUND: The gut microbiota is associated with risk for colorectal cancer (CRC), a chronic disease for which racial disparities persist with Black Americans having a higher risk of CRC incidence and mortality compared to other groups. Given documented racial differences, the gut microbiota may offer some insight into previously unexplained racial disparities in CRC incidence and mortality. A case-control analysis comparing 11 women newly diagnosed with CRC with 22 cancer-free women matched on age, BMI, and race in a 1:2 ratio was conducted. Information about participants' diet and perceived stress levels were obtained via 24-h Dietary Recall and Perceived Stress Scale-10 survey, respectively. Participants provided stool samples from which microbial genomic DNA was extracted to reveal the abundance of 26 genera chosen a priori based on their previously observed relevance to CRC, anxiety symptoms, and diet. RESULTS: Significantly lower alpha diversity was observed among cancer-free Black women compared to all other race-cancer status combinations. No group differences were observed when comparing beta diversity. Non-Hispanic White CRC cases tended to have higher relative abundance of Fusobacteria, Gemellaceae, and Peptostreptococcus compared to all other race-cancer combination groups. Perceived stress was inversely associated with alpha diversity and was associated with additional genera. CONCLUSIONS: Our findings suggest that microbiome-CRC associations may differ by racial group. Additional large, racially diverse population-based studies are needed to determine if previously identified associations between characteristics of the gut microbiome and CRC are generalizable to Black women and other racial, ethnic, and gender groups.
RESUMO
Background: Bacterial-sourced single-cell proteins (SCPs) offer an alternative protein source for diet formulation for Zebrafish (Danio rerio) and other aquaculture models. In addition, the use of a single-cell bacterial protein source derived from multiple species provides a unique insight into the interplay among nutrients in the diet, microbial populations in the diet, and the gut microbiome in D. rerio. Objective: Our objective in this study was to evaluate the impact of dietary replacement of fish protein hydrolysate in a standard reference (SR) with a single-cell bacterial protein source on D. rerio gut microbiome. Methods: We investigated gut microbial compositions of D. rerio fed an open-formulation standard reference (SR) diet or a bacterial-sourced protein (BP) diet, utilizing microbial taxonomic co-occurrence networks, and predicted functional profiles. Results: Microbial communities in the SR diet were primarily composed of Firmicutes. In contrast, the BP diet was mainly composed of Proteobacteria. Alpha diversity revealed significant differences in microbial communities between the 2 diets, and between the guts of D. rerio fed either of the 2 diets. D. rerio fed with the SR diet resulted in abundance of Aeromonas and Vibrio. In contrast, D. rerio fed with a BP diet displayed a large abundance of members from the Rhodobacteraceae family. Taxonomic co-occurrence networks display unique microbial interactions, and key taxons in D. rerio gut samples were dependent on diet and gender. Predicted functional profiling of the microbiome across D. rerio fed SR or BP diets revealed distinct metabolic pathway differences. Female D. rerio fed the BP diet displayed significant upregulation of pathways related to primary and secondary bile acid synthesis. Male D. rerio fed the BP diet revealed similar pathway shifts and, additionally, a significant upregulation of the polyketide sugar unit biosynthesis pathway. Conclusions: The use of a BP dramatically affects the composition and activity of the gut microbiome. Future investigations should further address the interplay among biological systems and diet and may offer insights into potential health benefits in preclinical and translational animal models.
RESUMO
The Methionine restriction (MR) diet has been shown to delay aging and extend lifespan in various model organisms. However, the long-term effects of MR diet on the gut microbiome composition remain unclear. To study this, male mice were started on MR and control diet regimens at 6 months and continued until 22 months of age. MR mice have reduced body weight, fat mass percentage, and bone mineral density while having increased lean mass percentage. MR mice also have increased insulin sensitivity along with increasing indirect calorimetry markers such as energy expenditure, oxygen consumption, carbon dioxide production, and glucose oxidation. Fecal samples were collected at 1 week, 18 weeks, and 57 weeks after the diet onset for 16S rRNA amplicon sequencing to study the gut microbiome composition. Alpha and beta diversity metrics detected changes occurring due to the timepoint variable, but no changes were detected due to the diet variable. The results from LEfSe analysis surprisingly showed that more bacterial taxa changes were linked to age rather than diet. Interestingly, we found that the long-term MR diet feeding induced smaller changes compared to short-term feeding. Specific taxa changes due to the diet were observed at the 1 or 18-week time points, including Ileibacterium, Odoribacter, Lachnoclostridium, Marinifilaceae, and Lactobacillaceae. Furthermore, there were consistent aging-associated changes across both groups, with an increase in Ileibacterium and Erysipelotrichaceae with age, while Eubacterium_coprostanoligenes_group, Ruminococcaceae, Peptococcaceae, and Peptococcus decreased with age.
Assuntos
Microbioma Gastrointestinal , Metionina , Masculino , Camundongos , Animais , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S , Dieta , Peso Corporal , Racemetionina/farmacologiaRESUMO
The relationship between dietary habits and microbiota composition during adolescence has not been well examined. This is a crucial knowledge gap to fill considering that diet-microbiota interactions influence neurodevelopment, immune system maturation and metabolic regulation. This study examined the associations between diet and the gut microbiota in a school-based sample of 136 adolescents (Mage = 12·1 years; age range 11-13 years; 48 % female; 47 % Black, 38 % non-Hispanic White, 15 % Hispanic or other minorities) from urban, suburban and rural areas in the Southeast USA. Adolescents completed the Rapid Eating Assessment for Participants and provided stool samples for 16S ribosomal RNA gene sequencing. Parents reported their child and family socio-demographic characteristics. The associations between diet and socio-demographics with gut microbiota diversity and abundance were analysed using multivariable regression models. Child race and ethnicity, sex, socio-economic status and geographic locale contributed to variation within microbiota composition (ß-diversity). Greater consumption of processed meat was associated with a lower microbial α-diversity after adjusting for socio-demographic variables. Multi-adjusted models showed that frequent consumption of nutrient-poor, energy-dense foods (e.g. sugar-sweetened beverages, fried foods, sweets) was negatively associated with abundances of genera in the family Lachnospiraceae (Anaerostipes, Fusicatenibacter and Roseburia), which are thought to play a beneficial role in host health through their production of short-chain fatty acids (SCFAs). These results provide new insights into the complex relationships among socio-demographic factors, diet and gut microbiota during adolescence. Adolescence may represent a critical window of opportunity to promote healthy eating practices that shape a homoeostatic gut microbiota with life-long benefits.
Assuntos
Microbioma Gastrointestinal , Criança , Humanos , Feminino , Adolescente , Masculino , Dieta , Alimentos , Comportamento Alimentar , Demografia , RNA Ribossômico 16S/análiseRESUMO
OBJECTIVES: To investigate the gut-brain axis, we explored the relationships among mood disturbance (MD), diet quality (DQ), and fecal microbiota in free-living adults. METHODS: A cross-sectional analysis was conducted with data from 75 healthy adults enrolled in two studies. Anthropometrics, 16s rRNA gene sequencing of fecal microbes, DQ as assessed by Healthy Eating Index-2015 (HEI), and MD determined by Profile of Mood States (POMS) were included. Alpha-diversity and DQ differences were explored between low (n = 37) and high MD (n = 38) groups. Spearman correlations were used to investigate relationships between alpha-diversity, DQ, and POMS subscales. Moderation analysis explored the effect of HEI score on the relationship between MD and alpha-diversity. RESULTS: Participants were mostly white (67%), 54.5 years old (±11.8), and overweight (28.5 ± 6.5 kg/m2). Shannon and Simpson indices indicate higher alpha-diversity in participants with low MD compared to high MD (p = 0.004 and p = 0.008, respectively). Simpson and Shannon indices were correlated with subscale of anger (rho = -0.303, p = 0.011; rho = -0.265, p = 0.027, respectively)and total MD (rho = -0.404, p = 0.001; rho = -0.357, p = 0.002, respectively). Refined grains were associated with fatigue and tension subscales (rho = 0.428, p < 0.001; rho = 0.302, p = 0.014, respectively). DQ did not significantly moderate the relationship between alpha-diversity and mood disturbance (F(7, 53) = 2.00, p = 0.072, R2 = 0.209). Shannon index was a significant predictor of MD (b = -4.39, t(53) = -2.55, p = 0.014), but total HEI score and the interaction (Shannon index*HEI score) were not significant. DISCUSSION: Greater bacterial diversity was associated with lower MD, and DQ was associated with various mood state subscales in this sample of adults.
Assuntos
Dieta , Microbiota , Adulto , Humanos , Pessoa de Meia-Idade , Estudos Transversais , RNA Ribossômico 16S/genética , SobrepesoRESUMO
BACKGROUND: Children with sickle cell disease (SCD) frequently present with acute pain. The abdomen, a common site of acute SCD-related pain, may be present in a variety of gastrointestinal (GI) pathologies. Limited data exist on prevalence and workup of abdominal pain in patients with SCD during acute pain events. OBJECTIVES: Determine prevalence of GI symptoms, GI-specific evaluation and risks of hospitalization in children with SCD presenting to the emergency department (ED) or hospitalized with abdominal pain. METHODS: Retrospective study of children less than 21 years presenting to the ED or hospitalized with pain in our center over 2 years. Descriptive statistics were used to report clinical characteristics, frequency of GI symptoms, workup by age (<5 vs. ≥5 years), and genotype (sickle cell anemia [SCA] vs. non-SCA). Logistic regression models were used to identify risks associated with hospitalization. RESULTS: A total of 1279 encounters in 378 patients were analyzed; 23% (n = 291) encounters were associated with abdominal pain. More abdominal pain-associated hospitalizations occurred in older children, SCA, children with lower mean hemoglobin (8.7 ± 1.9 vs. 9.6 ± 1.6 g/dL, p < .001) and higher mean white blood cell (WBC) count (14.9 ± 6.6 vs. 13.2 ± 5.3 × 103 /µL, p = .02). We identified that less than 50% of patients presenting to the ED with abdominal pain received a GI-specific evaluation. CONCLUSION: Children with SCD frequently present with abdominal pain and other GI symptoms, with limited GI evaluations performed. GI-specific evaluation may increase diagnosis of GI pathologies, rule out GI pathologies, and contribute to the limited knowledge of the abdomen as a primary site of SCD pain.
Assuntos
Dor Aguda , Anemia Falciforme , Humanos , Criança , Estudos Retrospectivos , Anemia Falciforme/complicações , Anemia Falciforme/patologia , Dor Abdominal/complicações , AbdomeRESUMO
Due to suppressive antibiotics, patients with recurrent Clostridium difficile have gut microbial communities that are devoid of most commensal microbes. Studies have shown that most of the failures using fecal microbe transplantation (FMT) for recurrent C. difficile occur during the first 4 weeks following transplantation. To identify features of donor Bacteroides vulgatus that lead to early colonization, we used two data sets that collected fecal samples from recipients at early times points post FMT. The first analysis used the shotgun metagenomic DNA sequencing data set from Aggarwala et al. consisting of 7 FMT donors and 13 patients with recurrent C. difficile with fecal samples taken as early as 24 h post FMT. We identified 2 FMT donors in which colonization of recipients by donor B. vulgatus was detected as early as 24 h post FMT. We examined a second data set from Hourigan et al. that collected fecal samples from C. difficile infected children and identified 1 of 3 FMT that also had early colonization of the donor B. vulgatus. We found 19 genes out of 4911 encoding proteins were unique to the 3 donors that had early colonization. A gene encoding a putative chitobiase was identified that was in a gene complex that had been previously identified to enhance colonization in mice. A gene encoding a unique fimbrillin (i.e., pili) family protein and 17 genes encoding hypothetical proteins were also specific for early colonizing donors. Most of the genes encoding hypothetical proteins had neighboring genes that encoded proteins involved in mobilization or transposition. Finally, analysis of 42 paired fecal samples from the human microbiome project (HMP) found no individuals had all 19 genes while 2 individuals had none of the 19 genes. Based on the results from our study, consideration should be given to the screening of FMT donors for these B. vulgatus genes found to enhance early colonization that would be of benefit to promote colonization following FMT.
Assuntos
Clostridioides difficile , Transplante de Microbiota Fecal , Criança , Humanos , Animais , Camundongos , Clostridioides difficile/genética , Doadores de Tecidos , Bacteroides/genéticaRESUMO
Background: Healthy and predictable physiologic homeostasis is paramount in animal models for biomedical research. Proper macronutrient intake is an essential and controllable environmental factor for maintaining animal health and promoting experimental reproducibility. Objective and Methods: Evaluate reductions in dietary macronutrient composition on body weight metrics, composition, and gut microbiome in Danio rerio. Methods: D. rerio were fed reference diets deficient in either protein or lipid content for 14 weeks. Results: Diets of reduced-protein or reduced-fat resulted in lower weight gain than the standard reference diet in male and female D. rerio. Females fed the reduced-protein diet had increased total body lipid, suggesting increased adiposity compared with females fed the standard reference diet. In contrast, females fed the reduced-fat diet had decreased total body lipid compared with females fed the standard reference diet. The microbial community in male and female D. rerio fed the standard reference diet displayed high abundances of Aeromonas, Rhodobacteraceae, and Vibrio. In contrast, Vibrio spp. were dominant in male and female D. rerio fed a reduced-protein diet, whereas Pseudomonas displayed heightened abundance when fed the reduced-fat diet. Predicted functional metagenomics of microbial communities (PICRUSt2) revealed a 3- to 4-fold increase in the KEGG (Kyoto Encyclopedia of Genes and Genomes) functional category of steroid hormone biosynthesis in both male and female D. rerio fed a reduced-protein diet. In contrast, an upregulation of secondary bile acid biosynthesis and synthesis and degradation of ketone bodies was concomitant with a downregulation in steroid hormone biosynthesis in females fed a reduced-fat diet. Conclusions: These study outcomes provide insight into future investigations to understand nutrient requirements to optimize growth, reproductive, and health demographics to microbial populations and metabolism in the D. rerio gut ecosystem. These evaluations are critical in understanding the maintenance of steady-state physiologic and metabolic homeostasis in D. rerio. Curr Dev Nutr 20xx;x:xx.
RESUMO
Breast cancer (BC) is among the most frequently diagnosed malignant cancers in women in the United States. Diet and nutrition supplementation are closely related to BC onset and progression, and inulin is commercially available as a health supplement to improve gut health. However, little is known with respect to inulin intake for BC prevention. We investigated the effect of an inulin-supplemented diet on the prevention of estrogen receptor-negative mammary carcinoma in a transgenic mouse model. Plasma short-chain fatty acids were measured, the gut microbial composition was analyzed, and the expression of proteins related to cell cycle and epigenetics-related genes was measured. Inulin supplementation greatly inhibited tumor growth and significantly delayed tumor latency. The mice that consumed inulin had a distinct microbiome and higher diversity of gut microbial composition compared to the control. The concentration of propionic acid in plasma was significantly higher in the inulin-supplemented group. The protein expression of epigenetic-modulating histone deacetylase 2 (Hdac2), Hdac8, and DNA methyltransferase 3b decreased. The protein expression of factors related to tumor cell proliferation and survival, such as Akt, phospho-PI3K, and NF-kB, also decreased with inulin administration. Furthermore, sodium propionate showed BC prevention effect in vivo through epigenetic regulations. These studies suggest that modulating microbial composition through inulin consumption may be a promising strategy for BC prevention.
Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , Feminino , Animais , Camundongos , Inulina/farmacologia , Inulina/metabolismo , Receptores de Estrogênio/metabolismo , Epigênese Genética , Suplementos Nutricionais , Prebióticos/análiseRESUMO
BACKGROUND: There is little data on gut microbiome and various factors that lead to dysbiosis in pediatric intestinal failure (PIF). This study aimed to characterize gut microbiome in PIF and determine factors that may affect microbial composition in these patients. METHODS: This is a single-center, prospective cohort study of children with PIF followed at our intestinal rehabilitation program. Stool samples were collected longitudinally at regular intervals over a 1-year period. Medical records were reviewed, and demographic and clinical data were collected. Medication history including the use of acid blockers, scheduled prophylactic antibiotics, and bile acid sequestrants was obtained. Gut microbial diversity among patients was assessed and compared according to various host characteristics of interest. RESULTS: The final analysis included 74 specimens from 12 subjects. Scheduled prophylactic antibiotics, presence of central line associated bloodstream infection (CLABSI) at the time of specimen collection, use of acid blockers, and ≥50% calories delivered via parenteral nutrition (PN) was associated with reduced alpha diversity, whereas increasing age was associated with improved alpha diversity at various microbial levels ( P value <0.05). Beta diversity differed with age, presence of CLABSI, use of scheduled antibiotics, acid blockers, percent calories via PN, and presence of oral feeds at various microbial levels ( P value <0.05). Single taxon analysis identified several taxa at several microbial levels, which were significantly associated with various host characteristics. CONCLUSION: Gut microbial diversity in PIF subjects is influenced by various factors involved in the rehabilitation process including medications, percent calories received parenterally, CLABSI events, the degree of oral feeding, and age. Additional investigation performed across multiple centers is needed to further understand the impact of these findings on important clinical outcomes in PIF.
Assuntos
Microbioma Gastrointestinal , Insuficiência Intestinal , Humanos , Criança , Estudos Prospectivos , Ingestão de Energia , Nutrição ParenteralRESUMO
In humans and animals, offspring of allergic mothers have increased responsiveness to allergens. This is blocked in mice by maternal supplementation with α-tocopherol (αT). Also, adults and children with allergic asthma have airway microbiome dysbiosis with increased Proteobacteria and may have decreased Bacteroidota. It is not known whether αT alters neonate development of lung microbiome dysbiosis or whether neonate lung dysbiosis modifies development of allergy. To address this, the bronchoalveolar lavage was analyzed by 16S rRNA gene analysis (bacterial microbiome) from pups of allergic and non-allergic mothers with a basal diet or αT-supplemented diet. Before and after allergen challenge, pups of allergic mothers had dysbiosis in lung microbial composition with increased Proteobacteria and decreased Bacteroidota and this was blocked by αT supplementation. We determined whether intratracheal transfer of pup lung dysbiotic microbial communities modifies the development of allergy in recipient pups early in life. Interestingly, transfer of dysbiotic lung microbial communities from neonates of allergic mothers to neonates of non-allergic mothers was sufficient to confer responsiveness to allergen in the recipient pups. In contrast, neonates of allergic mothers were not protected from development of allergy by transfer of donor lung microbial communities from either neonates of non-allergic mothers or neonates of αT-supplemented allergic mothers. These data suggest that the dysbiotic lung microbiota is dominant and sufficient for enhanced neonate responsiveness to allergen. Importantly, infants within the INHANCE cohort with an anti-inflammatory profile of tocopherol isoforms had an altered microbiome composition compared to infants with a pro-inflammatory profile of tocopherol isoforms. These data may inform design of future studies for approaches in the prevention or intervention in asthma and allergic disease early in life.
RESUMO
Omega-3 fatty acids (w3FAs) have demonstrated benefits in several inflammatory disease states; however, limited research has been conducted in sickle cell disease (SCD). While marine-based w3FAs are used, their strong odor and taste are a barrier to long-term use. Plant-based sources, especially those in whole foods, may circumvent this barrier. We tested whether flaxseed (rich source of w3FAs) was acceptable to children with SCD. A cross-sectional tasting trial of flaxseed added to baked products (cookies, pancakes, brownies) or to readily available foods (applesauce, pudding, yogurt) was conducted among 30 children (median age = 13 years) reporting to a clinic for routine follow-up, sick visits, or transfusion for SCD to determine acceptability. A food preference rank scale (1-7) was used to rank products based on taste, sight, smell, and texture. An average score for each product was computed. Children were also asked to rank their top three products. The top-ranked products were flaxseed baked in brownies and cookies and ground flaxseed added to yogurt. More than 80% of participants indicated willingness to be contacted for a follow-up study in which a flaxseed-supplemented diet would be evaluated for mitigation of SCD-associated pain. In conclusion, flaxseed-enriched products are palatable and acceptable in children with SCD.
Assuntos
Anemia Falciforme , Linho , Humanos , Criança , Adolescente , Alimentos Fortificados , Estudos Transversais , SeguimentosRESUMO
We present high-throughput amplicon sequence (HTS) datasets of the purified microbial metacommunity DNA of coastal surface sediments from Portersville Bay (PVB) (n = 3), Bayou La Batre (BLB) (n = 3), and Mobile Bay (MOB) (n = 3) of the U.S. Gulf of Mexico (U.S. Gulf Coast). The PVB samples were collected from the oyster aquaculture Shellevator™ system; the BLB samples were from locations on the shoreline adjacent to wild oysters attached to rocks and likely polluted from sewage and possibly chemical contamination from boats, shipyards, and seafood processing facilities; and MOB samples were adjacent to aquaculture oysters in bottom cages. The amplicons of the V4 hypervariable segment of the 16S rRNA gene from each sample were sequenced on an Illumina MiSeq to generate these HTS datasets. The raw sequences were quality-checked, demultiplexed into FASTQ files, denoised using DADA2, and subsampled. Then, the FASTA formatted sequences were assigned the taxonomic ids to amplicon sequence variants (ASVs) against the silva-138-99-nb-classifier using the Quantitative Insights Into Microbial Ecology (QIIME2 v2022.2). The applicability of the HTS datasets was confirmed by microbial taxa analysis at the phylum level using the "qiime taxa collapse" command. All HTS datasets are available through the BioSample Submission Portal under the BioProject ID PRJNA876773 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA876773).
RESUMO
Alzheimer's disease (AD) is one of the most devastating diseases currently in the world with no effective treatments. There is increasing evidence that the gut microbiome plays a role in AD. Here we set out to study the age-related changes in the microbiome of the Tgf344-AD rats. We performed 16S ribosomal RNA sequencing on the fecal samples of male rats at 14 and 20 months of age. We found the Tgf344-AD rats to have decreased microbial diversity compared to controls at 14 months of age and this was found to be opposite at 20 months of age. Interestingly, we found a distinctive shift in the microbial community structure of the rats with aging along with changes in the microbiota composition. Some of the observed changes in the Tgf344AD rats were in the genera Bifidobacterium, Ruminococcus, Parasutterella, Lachnoclostridium and Butyricicoccus. Other age-related changes occuring in both the Tgf344-AD and WT control rats were decreases in Enterohaldus, Escherichia Shigella, Rothia and increase in Turicibacter and Clostrium_senso_stricto. Our study has shown that gut microbiota changes occurs in this Alzheimer's disease rat model.
Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Microbiota , Ratos , Masculino , Animais , Doença de Alzheimer/genética , Microbioma Gastrointestinal/genética , Envelhecimento , Fezes/microbiologiaRESUMO
Background: The gut microbiota is associated with risk for colorectal cancer (CRC), a chronic disease for which racial disparities persist with Black Americans having a higher risk of CRC incidence and mortality compared to other groups. Given documented racial differences, the gut microbiota may offer some insight into previously unexplained racial disparities in CRC incidence and mortality. A case-control analysis comparing 11 women newly diagnosed with CRC with 22 cancer-free women matched on age, BMI, and race in a 1:2 ratio was conducted. Information about participants' diet and perceived stress levels were obtained via 24-hour Dietary Recall and Perceived Stress Scale-10 survey, respectively. Participants provided stool samples from which microbial genomic DNA was extracted to reveal the abundance of 26 genera chosen a priori based on their previously observed relevance to CRC, anxiety symptoms, and diet. Results: Significantly lower alpha diversity was observed among cancer-free Black women compared to all other race-cancer status combinations. No group differences were observed when comparing beta diversity. Non-Hispanic White CRC cases tended to have higher relative abundance of Fusobacteria, Gemellaceae, and Peptostreptococcus compared to all other race-cancer combination groups. Perceived stress was inversely associated with alpha diversity and was associated with additional genera. Conclusions: Our findings suggest that microbiome-CRC associations may differ by racial group. Additional large, racially diverse population-based studies are needed to determine if previously identified associations between characteristics of the gut microbiome and CRC are generalizable to Black women and other racial, ethnic, and gender groups.