Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 109(5): 747-750, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33662270

RESUMO

Policy search lets you discover rules and adapt behavior. In this issue of Neuron, Cohen et al. (2021) demonstrate that the dynamics of neurons in primate anterior cingulate cortex and putamen indicate when a correct policy is discovered and confidence in executing decisions under that policy.


Assuntos
Giro do Cíngulo , Putamen , Animais , Aprendizagem , Neurônios , Putamen/diagnóstico por imagem
2.
Elife ; 92020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32876047

RESUMO

The primate amygdala performs multiple functions that may be related to the anatomical heterogeneity of its nuclei. Individual neurons with stimulus- and task-specific responses are not clustered in any of the nuclei, suggesting that single-units may be too-fine grained to shed light on the mesoscale organization of the amygdala. We have extracted from local field potentials recorded simultaneously from multiple locations within the primate (Macaca mulatta) amygdala spatially defined and statistically separable responses to visual, tactile, and auditory stimuli. A generalized eigendecomposition-based method of source separation isolated coactivity patterns, or components, that in neurophysiological terms correspond to putative subnetworks. Some component spatial patterns mapped onto the anatomical organization of the amygdala, while other components reflected integration across nuclei. These components differentiated between visual, tactile, and auditory stimuli suggesting the presence of functionally distinct parallel subnetworks.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Tonsila do Cerebelo/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Macaca mulatta , Masculino , Tato
3.
Artigo em Inglês | MEDLINE | ID: mdl-28800678

RESUMO

A major challenge of primate neurophysiology, particularly in the domain of social neuroscience, is to adopt more natural behaviors without compromising the ability to relate patterns of neural activity to specific actions or sensory inputs. Traditional approaches have identified neural activity patterns in the amygdala in response to simplified versions of social stimuli such as static images of faces. As a departure from this reduced approach, single images of faces were replaced with arrays of images or videos of conspecifics. These stimuli elicited more natural behaviors and new types of neural responses: (1) attention-gated responses to faces, (2) selective responses to eye contact, and (3) selective responses to touch and somatosensory feedback during the production of facial expressions. An additional advance toward more natural social behaviors in the laboratory was the implementation of dyadic social interactions. Under these conditions, neurons encoded similarly rewards that monkeys delivered to self and to their social partner. These findings reinforce the value of bringing natural, ethologically valid, behavioral tasks under neurophysiological scrutiny. WIREs Cogn Sci 2018, 9:e1449. doi: 10.1002/wcs.1449 This article is categorized under: Psychology > Emotion and Motivation Neuroscience > Cognition Neuroscience > Physiology.


Assuntos
Tonsila do Cerebelo/fisiologia , Expressão Facial , Neurônios/fisiologia , Neurofisiologia/métodos , Primatas , Comportamento Social , Animais , Atenção/fisiologia , Humanos , Memória , Estimulação Luminosa
4.
Cell Rep ; 18(4): 878-891, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122239

RESUMO

Neurons in the primate amygdala respond prominently to faces. This implicates the amygdala in the processing of socially significant stimuli, yet its contribution to social perception remains poorly understood. We evaluated the representation of faces in the primate amygdala during naturalistic conditions by recording from both human and macaque amygdala neurons during free viewing of identical arrays of images with concurrent eye tracking. Neurons responded to faces only when they were fixated, suggesting that neuronal activity was gated by visual attention. Further experiments in humans utilizing covert attention confirmed this hypothesis. In both species, the majority of face-selective neurons preferred faces of conspecifics, a bias also seen behaviorally in first fixation preferences. Response latencies, relative to fixation onset, were shortest for conspecific-selective neurons and were ∼100 ms shorter in monkeys compared to humans. This argues that attention to faces gates amygdala responses, which in turn prioritize species-typical information for further processing.


Assuntos
Tonsila do Cerebelo/fisiologia , Macaca mulatta/fisiologia , Neurônios/fisiologia , Animais , Área Sob a Curva , Comportamento , Epilepsia/fisiopatologia , Humanos , Estimulação Luminosa , Curva ROC , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA