Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Ageing Res Rev ; 96: 102246, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38401571

RESUMO

TAR DNA binding protein-43 (TDP-43) is a key component in RNA splicing which plays a crucial role in the aging process. In neurodegenerative diseases such as amyotrophic lateral sclerosis, frontotemporal dementia and limbic-predominant age-related TDP-43 encephalopathy, TDP-43 can be mutated, mislocalised out of the nucleus of neurons and glial cells and form cytoplasmic inclusions. These TDP-43 alterations can lead to its RNA splicing dysregulation and contribute to mis-splicing of various types of RNA, such as mRNA, microRNA, and circular RNA. These changes can result in the generation of an altered transcriptome and proteome within cells, ultimately changing the diversity and quantity of gene products. In this review, we summarise the findings of novel atypical RNAs resulting from TDP-43 dysfunction and their potential as biomarkers or targets for therapeutic development.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Splicing de RNA , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo
2.
Nucleic Acids Res ; 52(9): 5301-5319, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38381071

RESUMO

Insoluble cytoplasmic aggregate formation of the RNA-binding protein TDP-43 is a major hallmark of neurodegenerative diseases including Amyotrophic Lateral Sclerosis. TDP-43 localizes predominantly in the nucleus, arranging itself into dynamic condensates through liquid-liquid phase separation (LLPS). Mutations and post-translational modifications can alter the condensation properties of TDP-43, contributing to the transition of liquid-like biomolecular condensates into solid-like aggregates. However, to date it has been a challenge to study the dynamics of this process in vivo. We demonstrate through live imaging that human TDP-43 undergoes nuclear condensation in spinal motor neurons in a living animal. RNA-binding deficiencies as well as post-translational modifications can lead to aberrant condensation and altered TDP-43 compartmentalization. Single-molecule tracking revealed an altered mobility profile for RNA-binding deficient TDP-43. Overall, these results provide a critically needed in vivo characterization of TDP-43 condensation, demonstrate phase separation as an important regulatory mechanism of TDP-43 accessibility, and identify a molecular mechanism of how functional TDP-43 can be regulated.


Assuntos
Proteínas de Ligação a DNA , Neurônios Motores , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Condensados Biomoleculares/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Homeostase , Neurônios Motores/metabolismo , Mutação , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
3.
Nat Commun ; 15(1): 1508, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374041

RESUMO

Understanding the mechanisms that drive TDP-43 pathology is integral to combating amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases. Here we generated a longitudinal quantitative proteomic map of the cortex from the cytoplasmic TDP-43 rNLS8 mouse model of ALS and FTLD, and developed a complementary open-access webtool, TDP-map ( https://shiny.rcc.uq.edu.au/TDP-map/ ). We identified distinct protein subsets enriched for diverse biological pathways with temporal alterations in protein abundance, including increases in protein folding factors prior to disease onset. This included increased levels of DnaJ homolog subfamily B member 5, DNAJB5, which also co-localized with TDP-43 pathology in diseased human motor cortex. DNAJB5 over-expression decreased TDP-43 aggregation in cell and cortical neuron cultures, and knockout of Dnajb5 exacerbated motor impairments caused by AAV-mediated cytoplasmic TDP-43 expression in mice. Together, these findings reveal molecular mechanisms at distinct stages of ALS and FTLD progression and suggest that protein folding factors could be protective in neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Agregados Proteicos , Proteinopatias TDP-43 , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Neurônios/metabolismo , Proteômica , Proteinopatias TDP-43/metabolismo
4.
Neurobiol Dis ; 192: 106421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286389

RESUMO

Previously, we demonstrated that the SCFcyclin F complex directly mediates the poly-ubiquitylation of TDP-43, raising the question of whether cyclin F can be used to enhance the turnover of TDP-43. A hurdle to the use of cyclin F, however, is that the overexpression of cyclin F can lead to the initiation of cell death pathways. Accordingly, the aim of this study was to identify and evaluate a less toxic variant of cyclin F. To do so, we first confirmed and validated our previous findings that cyclin F binds to TDP-43 in an atypical manner. Additionally, we demonstrated that mutating the canonical substrate region in cyclin F (to generate cyclin FMRL/AAA) led to reduced binding affinity to known canonical substrates without impacting the interaction between cyclin F and TDP-43. Notably, both wild-type and cyclin FMRL/AAA effectively reduced the abundance of TDP-43 in cultured cells whilst cyclin FMRL/AAA also demonstrated reduced cell death compared to the wild-type control. The decrease in toxicity also led to a reduction in morphological defects in zebrafish embryos. These results suggest that cyclin F can be modified to enhance its targeting of TDP-43, which in turn reduces the toxicity associated with the overexpression of cyclin F. This study provides greater insights into the interaction that occurs between cyclin F and TDP-43 in cells and in vivo.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Esclerose Lateral Amiotrófica/metabolismo , Peixe-Zebra , Proteínas de Ligação a DNA/metabolismo , Ubiquitinação , Ciclinas/genética , Ciclinas/metabolismo
6.
Mol Neurobiol ; 60(9): 5034-5054, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37243816

RESUMO

Amyotrophic lateral sclerosis (ALS)- and frontotemporal dementia (FTD)-linked mutations in CCNF have been shown to cause dysregulation to protein homeostasis. CCNF encodes for cyclin F, which is part of the cyclin F-E3 ligase complex SCFcyclinF known to ubiquitylate substrates for proteasomal degradation. In this study, we identified a function of cyclin F to regulate substrate solubility and show how cyclin F mechanistically underlies ALS and FTD disease pathogenesis. We demonstrated that ALS and FTD-associated protein sequestosome-1/p62 (p62) was a canonical substrate of cyclin F which was ubiquitylated by the SCFcyclinF complex. We found that SCFcyclin F ubiquitylated p62 at lysine(K)281, and that K281 regulated the propensity of p62 to aggregate. Further, cyclin F expression promoted the aggregation of p62 into the insoluble fraction, which corresponded to an increased number of p62 foci. Notably, ALS and FTD-linked mutant cyclin F p.S621G aberrantly ubiquitylated p62, dysregulated p62 solubility in neuronal-like cells, patient-derived fibroblasts and induced pluripotent stem cells and dysregulated p62 foci formation. Consistently, motor neurons from patient spinal cord tissue exhibited increased p62 ubiquitylation. We suggest that the p.S621G mutation impairs the functions of cyclin F to promote p62 foci formation and shift p62 into the insoluble fraction, which may be associated to aberrant mutant cyclin F-mediated ubiquitylation of p62. Given that p62 dysregulation is common across the ALS and FTD spectrum, our study provides insights into p62 regulation and demonstrates that ALS and FTD-linked cyclin F mutant p.S621G can drive p62 pathogenesis associated with ALS and FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Esclerose Lateral Amiotrófica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ciclinas/metabolismo , Ubiquitinação , Mutação/genética
7.
J Neurochem ; 165(4): 563-586, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36847488

RESUMO

Progressive supranuclear palsy (PSP) is a late-onset neurodegenerative disease defined pathologically by the presence of insoluble phosphorylated-Tau (p-Tau) in neurons and glia. Identifying co-aggregating proteins within p-Tau inclusions may reveal important insights into processes affected by the aggregation of Tau. We used a proteomic approach, which combines antibody-mediated biotinylation and mass spectrometry (MS) to identify proteins proximal to p-Tau in PSP. Using this proof-of-concept workflow for identifying interacting proteins of interest, we characterized proteins proximal to p-Tau in PSP cases, identifying >84% of previously identified interaction partners of Tau and known modifiers of Tau aggregation, while 19 novel proteins not previously found associated with Tau were identified. Furthermore, our data also identified confidently assigned phosphorylation sites that have been previously reported on p-Tau. Additionally, using ingenuity pathway analysis (IPA) and human RNA-seq datasets, we identified proteins previously associated with neurological disorders and pathways involved in protein degradation, stress responses, cytoskeletal dynamics, metabolism, and neurotransmission. Together, our study demonstrates the utility of biotinylation by antibody recognition (BAR) approach to answer a fundamental question to rapidly identify proteins in proximity to p-Tau from post-mortem tissue. The application of this workflow opens up the opportunity to identify novel protein targets to give us insight into the biological process at the onset and progression of tauopathies.


Assuntos
Doenças Neurodegenerativas , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Proteínas tau/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Proteólise , Proteômica , Tauopatias/metabolismo , Transmissão Sináptica
8.
Front Immunol ; 13: 997786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341385

RESUMO

Microglia are mononuclear phagocytes of mesodermal origin that migrate to the central nervous system (CNS) during the early stages of embryonic development. After colonizing the CNS, they proliferate and remain able to self-renew throughout life, maintaining the number of microglia around 5-12% of the cells in the CNS parenchyma. They are considered to play key roles in development, homeostasis and innate immunity of the CNS. Microglia are exceptionally diverse in their morphological characteristics, actively modifying the shape of their processes and soma in response to different stimuli. This broad morphological spectrum of microglia responses is considered to be closely correlated to their diverse range of functions in health and disease. However, the morphophysiological attributes of microglia, and the structural and functional features of microglia-neuron interactions, remain largely unknown. Here, we assess the current knowledge of the diverse microglial morphologies, with a focus on the correlation between microglial shape and function. We also outline some of the current challenges, opportunities, and future directions that will help us to tackle unanswered questions about microglia, and to continue unravelling the mysteries of microglia, in all its shapes.


Assuntos
Sistema Nervoso Central , Microglia , Microglia/fisiologia , Neurônios , Homeostase
9.
Neuroscientist ; : 10738584221120182, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36062310

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease and is characterized by the degeneration of upper and lower motor neurons of the brain and spinal cord. ALS is also linked clinically, genetically, and pathologically to a form of dementia known as frontotemporal dementia (FTD). Identifying gene mutations that cause ALS/FTD has provided valuable insight into the disease process. Several ALS/FTD-causing mutations occur within proteins with roles in protein clearance systems. This includes ALS/FTD mutations in CCNF, which encodes the protein cyclin F: a component of a multiprotein E3 ubiquitin ligase that mediates the ubiquitylation of substrates for their timely degradation. In this review, we provide an update on the link between ALS/FTD CCNF mutations and neurodegeneration.

10.
Acta Biomater ; 147: 403-413, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35605956

RESUMO

The central nervous system (CNS) is protected by the blood-brain barrier (BBB), which acts as a physical barrier to regulate and prevent the uptake of endogenous metabolites and xenobiotics. However, the BBB prevents most non-lipophilic drugs from reaching the CNS following systematic administration. Therefore, there is considerable interest in identifying drug carriers that can maintain the biostability of therapeutic molecules and target their transport across the BBB. In this regard, upconversion nanoparticles (UCNPs) have become popular as a nanoparticle-based solution to this problem, with the additional benefit that they display unique properties for in vivo visualization. The majority of studies to date have explored basic spherical UCNPs for drug delivery applications. However, the biophysical properties of UCNPs, cell uptake and BBB transport have not been thoroughly investigated. In this study, we described a one-pot seed-mediated approach to precisely control longitudinal growth to produce bright UCNPs with various aspect ratios. We have systematically evaluated the effects of the physical aspect ratios and PEGylation of UCNPs on cellular uptake in different cell lines and an in vivo zebrafish model. We found that PEGylated the original UCNPs can enhance their biostability and cell uptake capacity. We identify an optimal aspect ratio for UCNP uptake into several different types of cultured cells, finding that this is generally in the ratio of 2 (length/width). This data provides a crucial clue for further optimizing UCNPs as a drug carrier to deliver therapeutic agents into the CNS. STATEMENT OF SIGNIFICANCE: The central nervous system (CNS) is protected by the blood-brain barrier (BBB), which acts as a highly selective semipermeable barrier of endothelial cells to regulate and prevent the uptake of toxins and pathogens. However, the BBB prevents most non-lipophilic drugs from reaching the CNS following systematic administration. The proposed research is significant because identifying the aspect ratio of drug carriers that maintains the biostability of therapeutic molecules and targets their transport across the blood-brain barrier (BBB) is crucial for designing an efficient drug delivery system. Therefore, this research provides a vital clue for further optimizing UCNPs as drug carriers to deliver therapeutic molecules into the brain.


Assuntos
Nanopartículas , Peixe-Zebra , Animais , Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/metabolismo , Nanopartículas/química , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia
11.
Neurobiol Dis ; 167: 105673, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231559

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the loss of upper and lower motor neurons in the brain and spinal cord. ALS and frontotemporal dementia (FTD) are overlapping diseases with shared pathological features. Affected neurons of people with ALS and FTD typically contain ubiquitin-immunoreactive inclusions, of which TDP-43 (Tar DNA-binding protein of 43 kDa) is a major component. However, what triggers the formation of these abnormal TDP-43 inclusions is unclear. Previously, we identified CCNF mutations in cohorts of familial and sporadic cases of ALS and FTD. CCNF encodes cyclin F, the substrate-binding component of a multiprotein E3 ubiquitin ligase complex that ubiquitylates and subsequently directs a set of protein substrates for proteasomal degradation. Here, we explored the relationship between cyclin F and TDP-43. METHODS: We used a series of complementary biochemical approaches including immunoprecipitations, in vitro ubiquitylation assays, immunofluorescence imaging and immunocytochemistry. Unpaired student t-tests were used to determine statistical significance of the results. RESULTS: In this study, we demonstrate that that the SCFcyclin F complex directly mediates the poly-ubiquitylation of TDP-43. Importantly, we demonstrate that cyclin F bearing the pathogenic ALS/FTD mutation, S621G, leads to aberrant ubiquitylation of TDP-43 as well as the accumulation of K48-ubiquitylated TDP-43 in neuron-like cells. Furthermore, we demonstrate that a patient carrying the ALS/FTD cyclin FS195R mutation displayed skein-like cytoplasmic TDP-43 aggregates, implying abnormal TDP-43 degradation in a CCNF mutation bearing patient. CONCLUSION: In summary, this study reports a direct ubiquitylation mechanism for TDP-43, revealing important insights into the regulation of cyclin F-mediated TDP-43 turnover and clues towards understanding the molecular origins of the ubiquitylated TDP-43 inclusions that are the hallmark pathological feature in ALS and FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Neurônios Motores/patologia , Doenças Neurodegenerativas/patologia , Ubiquitinação
12.
ACS Nano ; 16(4): 6293-6308, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35353498

RESUMO

Glioblastoma (GBM) is among the most treatment-resistant solid tumors and often recurrs after resection. One of the mechanisms through which GBM escapes various treatment modalities is the overexpression of anti-apoptotic Bcl-2 family proteins (e.g., Bcl-2, Bcl-xl, and Mcl-1) in tumor cells. Small-molecule inhibitors such as ABT-263 (ABT), which can promote mitochondrial-mediated cell apoptosis by selectively inhibiting the function of Bcl-2 and Bcl-xl, have been proven to be promising anticancer agents in clinical trials. However, the therapeutic prospects of ABT for GBM treatment are hampered by its limited blood-brain barrier (BBB) penetration, dose-dependent thrombocytopenia, and the drug resistance driven by Mcl-1, which is overexpressed in GBM cells and further upregulated upon treatment with ABT. Herein, we reported that the Mcl-1-specific inhibitor A-1210477 (A12) can act synergistically with ABT to induce potent cell apoptosis in U87 MG cells, drug-resistant U251 cells, and patient-derived GBM cancer stem cells. We further designed a biomimetic nanomedicine, based on the apolipoprotein E (ApoE) peptide-decorated red blood cell membrane and pH-sensitive dextran nanoparticles, for the brain-targeted delivery of ABT and A12. The synergistic anti-GBM effect was retained after encapsulation in the nanomedicine. Additionally, the obtained nanomedicine possessed good biocompatibility, exhibited efficient BBB penetration, and could effectively suppress tumor growth and prolong the survival time of mice bearing orthotopic GBM xenografts without inducing detectable adverse effects.


Assuntos
Antineoplásicos , Glioblastoma , Nanopartículas , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proteína bcl-X/metabolismo , Proteína bcl-X/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Biomimética , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Encéfalo/metabolismo
13.
Pharmaceutics ; 14(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35335878

RESUMO

Brain endothelial cells mediate the function and integrity of the blood brain barrier (BBB) by restricting its permeability and exposure to potential toxins. However, these cells are highly susceptible to cellular damage caused by oxidative stress and inflammation. Consequent disruption to the integrity of the BBB can lead to the pathogenesis of neurodegenerative diseases. Drug compounds with antioxidant and/or anti-inflammatory properties therefore have the potential to preserve the structure and function of the BBB. In this work, we demonstrate the enhanced antioxidative effects of the compound probucol when loaded within mesoporous silica particles (MSP) in vitro and in vivo zebrafish models. The dissolution kinetics were significantly enhanced when released from MSPs. An increased reduction in lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), cyclooxygenase (COX) enzyme activity and prostaglandin E2 production was measured in human brain endothelial cells treated with probucol-loaded MSPs. Furthermore, the LPS-induced permeability across an endothelial cell monolayer by paracellular and transcytotic mechanisms was also reduced at lower concentrations compared to the antioxidant ascorbic acid. Zebrafish pre-treated with probucol-loaded MSPs reduced hydrogen peroxide-induced ROS to control levels after 24-h incubation, at significantly lower concentrations than ascorbic acid. We provide compelling evidence that the encapsulation of antioxidant and anti-inflammatory compounds within MSPs can enhance their release, enhance their antioxidant effects properties, and open new avenues for the accelerated suppression of neuroinflammation.

14.
Adv Mater ; 34(5): e2106082, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34713508

RESUMO

A remaining challenge in the treatment of glioblastoma multiforme (GBM) is surmounting the blood-brain barrier (BBB). Such a challenge prevents the development of efficient theranostic approaches that combine reliable diagnosis with targeted therapy. In this study, brain-targeted near-infrared IIb (NIR-IIb) aggregation-induced-emission (AIE) nanoparticles are developed via rational design, which involves twisting the planar molecular backbone with steric hindrance. The resulting nanoparticles can balance competing responsiveness demands for radiation-mediated NIR fluorescence imaging at 1550 nm and non-radiation NIR photothermal therapy (NIR-PTT). The brain-targeting peptide apolipoprotein E peptide (ApoE) is grafted onto these nanoparticles (termed as ApoE-Ph NPs) to target glioma and promote efficient BBB traversal. A long imaging wavelength 1550 nm band-pass filter is utilized to monitor the in vivo biodistribution and accumulation of the nanoparticles in a model of orthotopic glioma, which overcomes previous limitations in wavelength range and equipment. The results demonstrate that the ApoE-Ph NPs have a higher PTT efficiency and significantly enhanced survival of mice bearing orthotopic GBM with moderate irradiation (0.5 W cm-2 ). Collectively, the work highlights the smart design of a brain-targeted NIR-II AIE theranostic approach that opens new diagnosis and treatment options in the photonic therapy of GBM.


Assuntos
Glioblastoma , Nanopartículas , Animais , Encéfalo , Linhagem Celular Tumoral , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Camundongos , Nanopartículas/química , Imagem Óptica , Medicina de Precisão , Nanomedicina Teranóstica , Distribuição Tecidual
15.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947983

RESUMO

Microglial cell processes form part of a subset of synaptic contacts that have been dubbed microglial tetra-partite or quad-partite synapses. Since tetrapartite may also refer to the presence of extracellular matrix components, we propose the more precise term microglial penta-partite synapse for synapses that show a microglial cell process in close physical proximity to neuronal and astrocytic synaptic constituents. Microglial cells are now recognised as key players in central nervous system (CNS) synaptic changes. When synaptic plasticity involving microglial penta-partite synapses occurs, microglia may utilise their cytokine arsenal to facilitate the generation of new synapses, eliminate those that are not needed anymore, or modify the molecular and structural properties of the remaining synaptic contacts. In addition, microglia-synapse contacts may develop de novo under pathological conditions. Microglial penta-partite synapses have received comparatively little attention as unique sites in the CNS where microglial cells, cytokines and other factors they release have a direct influence on the connections between neurons and their function. It concerns our understanding of the penta-partite synapse where the confusion created by the term "neuroinflammation" is most counterproductive. The mere presence of activated microglia or the release of their cytokines may occur independent of inflammation, and penta-partite synapses are not usually active in a neuroimmunological sense. Clarification of these details is the main purpose of this review, specifically highlighting the relationship between microglia, synapses, and the cytokines that can be released by microglial cells in health and disease.


Assuntos
Citocinas/metabolismo , Microglia/imunologia , Sinapses/imunologia , Animais , Regulação da Expressão Gênica , Humanos , Plasticidade Neuronal , Transdução de Sinais , Sinapses/fisiologia
16.
Eur J Neurosci ; 54(6): 6237-6255, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34390052

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease commonly treated with riluzole, a small molecule that may act via modulation of glutamatergic neurotransmission. However, riluzole only modestly extends lifespan for people living with ALS, and its precise mechanisms of action remain unclear. Most ALS cases are characterised by accumulation of cytoplasmic TAR DNA binding protein of 43 kDa (TDP-43), and understanding the effects of riluzole in models that closely recapitulate TDP-43 pathology may provide insights for development of improved therapeutics. We therefore investigated the effects of riluzole in female transgenic mice that inducibly express nuclear localisation sequence (NLS)-deficient human TDP-43 in neurons (NEFH-tTA/tetO-hTDP-43ΔNLS, 'rNLS8', mice). Riluzole treatment from the first day of hTDP-43ΔNLS expression did not alter disease onset, weight loss or performance on multiple motor behavioural tasks. Riluzole treatment also did not alter TDP-43 protein levels, solubility or phosphorylation. Although we identified a significant decrease in GluA2 and GluA3 proteins in the cortex of rNLS8 mice, riluzole did not ameliorate this disease-associated molecular phenotype. Likewise, riluzole did not alter the disease-associated atrophy of hindlimb muscle in rNLS8 mice. Finally, riluzole treatment beginning after disease onset in rNLS8 mice similarly had no effect on progression of late-stage disease or animal survival. Together, we demonstrate specific glutamatergic receptor alterations and muscle fibre-type changes reminiscent of ALS in female rNLS8 mice, but riluzole had no effect on these or any other disease phenotypes. Future targeting of pathways related to accumulation of TDP-43 pathology may be needed to develop better treatments for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Transgênicos , Riluzol/farmacologia , Riluzol/uso terapêutico
17.
Neuropathol Appl Neurobiol ; 47(7): 990-1003, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288034

RESUMO

AIM: Splicing factor proline and glutamine rich (SFPQ) is an RNA-DNA binding protein that is dysregulated in Alzheimer's disease and frontotemporal dementia. Dysregulation of SFPQ, specifically increased intron retention and nuclear depletion, has been linked to several genetic subtypes of amyotrophic lateral sclerosis (ALS), suggesting that SFPQ pathology may be a common feature of this heterogeneous disease. Our study aimed to investigate this hypothesis by providing the first comprehensive assessment of SFPQ pathology in large ALS case-control cohorts. METHODS: We examined SFPQ at the RNA, protein and DNA levels. SFPQ RNA expression and intron retention were examined using RNA-sequencing and quantitative PCR. SFPQ protein expression was assessed by immunoblotting and immunofluorescent staining. At the DNA level, SFPQ was examined for genetic variation novel to ALS patients. RESULTS: At the RNA level, retention of SFPQ intron nine was significantly increased in ALS patients' motor cortex. In addition, SFPQ RNA expression was significantly reduced in the central nervous system, but not blood, of patients. At the protein level, neither nuclear depletion nor reduced expression of SFPQ was found to be a consistent feature of spinal motor neurons. However, SFPQ-positive ubiquitinated protein aggregates were observed in patients' spinal motor neurons. At the DNA level, our genetic screen identified two novel and two rare SFPQ sequence variants not previously reported in the literature. CONCLUSIONS: Our findings confirm dysregulation of SFPQ as a pathological feature of the central nervous system of ALS patients and indicate that investigation of the functional consequences of this pathology will provide insight into ALS biology.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Glutamina/metabolismo , Neurônios Motores/patologia , Demência Frontotemporal/genética , Glutamina/genética , Humanos , Íntrons/fisiologia , Prolina/genética , Prolina/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
18.
Biomaterials ; 276: 121036, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34329919

RESUMO

Glioblastoma (GBM) is the most common and fatal form of malignant brain tumor. Despite intensive effort, there is still no effective GBM treatment. Therefore, novel and more effective GBM therapeutic approaches are highly desired. In this study, we combined polymeric nanotechnology with microRNA (miRNA) regulation technology to develop a targeted polymeric nanoparticle to co-deliver anti-miR-21 and miR-124 into the brain to effectively treat GBM. The polymeric nanoparticle decorated with Angiopep-2 peptide not only can encapsulate miRNA via triple-interaction (electrostatic, hydrogen bond and hydrophobic bonding) to protect miRNA against enzyme degradation in the blood, but also is capable of crossing blood brain barrier (BBB) and allowing targeted delivery of miRNAs to GBM tissue due to the dual-targeting function of Angiopep-2. Moreover, the co-delivered anti-miR-21 and miR-124 simultaneously regulated the mutant RAS/PI3K/PTEN/AKT signaling pathway in tumor cells, consequently achieving combinatorial GBM therapy. This combinatorial effect was confirmed by our results showing that these miRNA nanomedicines can effectively reduce tumor cell proliferation, migration and invasion as well as reducing tumor angiogenesis. Consequently, effective suppression of tumor growth and significantly improved medium survival time are observed when these miRNA nanomedicines were assessed in an orthotopic GBM xenograft model. This work indicated that our new polymeric nanoparticles successfully mediate inhibition of miR-21 and miR-124 supplementation to significantly reduce tumorigenesis, and may have strong potential in GBM therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Nanopartículas , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , MicroRNAs/genética
19.
Front Mol Neurosci ; 14: 627740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986643

RESUMO

The past decade has seen a rapid acceleration in the discovery of new genetic causes of ALS, with more than 20 putative ALS-causing genes now cited. These genes encode proteins that cover a diverse range of molecular functions, including free radical scavenging (e.g., SOD1), regulation of RNA homeostasis (e.g., TDP-43 and FUS), and protein degradation through the ubiquitin-proteasome system (e.g., ubiquilin-2 and cyclin F) and autophagy (TBK1 and sequestosome-1/p62). It is likely that the various initial triggers of disease (either genetic, environmental and/or gene-environment interaction) must converge upon a common set of molecular pathways that underlie ALS pathogenesis. Given the complexity, it is not surprising that a catalog of molecular pathways and proteostasis dysfunctions have been linked to ALS. One of the challenges in ALS research is determining, at the early stage of discovery, whether a new gene mutation is indeed disease-specific, and if it is linked to signaling pathways that trigger neuronal cell death. We have established a proof-of-concept proteogenomic workflow to assess new gene mutations, using CCNF (cyclin F) as an example, in cell culture models to screen whether potential gene candidates fit the criteria of activating apoptosis. This can provide an informative and time-efficient output that can be extended further for validation in a variety of in vitro and in vivo models and/or for mechanistic studies. As a proof-of-concept, we expressed cyclin F mutations (K97R, S195R, S509P, R574Q, S621G) in HEK293 cells for label-free quantitative proteomics that bioinformatically predicted activation of the neuronal cell death pathways, which was validated by immunoblot analysis. Proteomic analysis of induced pluripotent stem cells (iPSCs) derived from patient fibroblasts bearing the S621G mutation showed the same activation of these pathways providing compelling evidence for these candidate gene mutations to be strong candidates for further validation and mechanistic studies (such as E3 enzymatic activity assays, protein-protein and protein-substrate studies, and neuronal apoptosis and aberrant branching measurements in zebrafish). Our proteogenomics approach has great utility and provides a relatively high-throughput screening platform to explore candidate gene mutations for their propensity to cause neuronal cell death, which will guide a researcher for further experimental studies.

20.
Hum Mol Genet ; 30(11): 971-984, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33729478

RESUMO

Previously, we identified missense mutations in CCNF that are causative of familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Hallmark features of these diseases include the build-up of insoluble protein aggregates as well as the mislocalization of proteins such as transactive response DNA binding protein 43 kDa (TDP-43). In recent years, the dysregulation of SFPQ (splicing factor proline and glutamine rich) has also emerged as a pathological hallmark of ALS/FTD. CCNF encodes for the protein cyclin F, a substrate recognition component of an E3 ubiquitin ligase. We have previously shown that ALS/FTD-linked mutations in CCNF cause disruptions to overall protein homeostasis that leads to a build-up of K48-linked ubiquitylated proteins as well as defects in autophagic machinery. To investigate further processes that may be affected by cyclin F, we used a protein-proximity ligation method, known as Biotin Identification (BioID), standard immunoprecipitations and mass spectrometry to identify novel interaction partners of cyclin F and infer further process that may be affected by the ALS/FTD-causing mutation. Results demonstrate that cyclin F closely associates with proteins involved with RNA metabolism as well as a number of RNA-binding proteins previously linked to ALS/FTD, including SFPQ. Notably, the overexpression of cyclin F(S621G) led to the aggregation and altered subcellular distribution of SFPQ in human embryonic kidney (HEK293) cells, while leading to altered degradation in primary neurons. Overall, our data links ALS/FTD-causing mutations in CCNF to converging pathological features of ALS/FTD and provides a link between defective protein degradation systems and the pathological accumulation of a protein involved in RNA processing and metabolism.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ciclinas/genética , Demência Frontotemporal/genética , Fator de Processamento Associado a PTB/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Células HEK293 , Humanos , Agregados Proteicos/genética , Mapas de Interação de Proteínas/genética , Proteólise , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA