RESUMO
Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.
Assuntos
Diferenciação Celular , Receptores Notch , Transdução de Sinais , Engenharia Tecidual , Receptores Notch/metabolismo , Engenharia Tecidual/métodos , Animais , Humanos , Camundongos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Ligantes , Alicerces Teciduais/química , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Células HEK293RESUMO
Patterned morphologies, such as segments, spirals, stripes, and spots, frequently emerge during embryogenesis through self-organized coordination between cells. Yet, complex patterns also emerge in adults, suggesting that the capacity for spontaneous self-organization is a ubiquitous property of biological tissues. We review current knowledge on the principles and mechanisms of self-organized patterning in embryonic tissues and explore how these principles and mechanisms apply to adult tissues that exhibit features of patterning. We discuss how and why spontaneous pattern generation is integral to homeostasis and healing of tissues, illustrating it with examples from regenerative biology. We examine how aberrant self-organization underlies diverse pathological states, including inflammatory skin disorders and tumors. Lastly, we posit that based on such blueprints, targeted engineering of pattern-driving molecular circuits can be leveraged for synthetic biology and the generation of organoids with intricate patterns.
Assuntos
Padronização Corporal , Animais , Humanos , Desenvolvimento Embrionário , Homeostase , Organoides/metabolismo , EnvelhecimentoRESUMO
Synthetic development is a synthetic biology subfield aiming to reprogram higher-order eukaryotic cells for tissue formation and morphogenesis. Reprogramming efforts commonly rely upon implementing custom signaling networks into these cells, but the efficient design of these signaling networks is a substantial challenge. It is difficult to predict the tissue/morphogenic outcome of these networks, and in vitro testing of many networks is both costly and time-consuming. We therefore developed a computational framework with an in silico cell line (ISCL) that sports basic but modifiable features such as adhesion, motility, growth, and division. More importantly, ISCL can be quickly engineered with custom genetic circuits to test, improve, and explore different signaling network designs. We implemented this framework in a free cellular Potts modeling software CompuCell3D. In this chapter, we briefly discuss how to start with CompuCell3D and then go through the steps of how to make and modify ISCL. We then go through the steps of programming custom genetic circuits into ISCL to generate an example signaling network.
Assuntos
Transdução de Sinais , Software , Morfogênese , Biologia Sintética , Redes Reguladoras de GenesRESUMO
Synthetic Notch (synNotch) receptors are modular synthetic components that are genetically engineered into mammalian cells to detect signals presented by neighboring cells and respond by activating prescribed transcriptional programs. To date, synNotch has been used to program therapeutic cells and pattern morphogenesis in multicellular systems. However, cell-presented ligands have limited versatility for applications that require spatial precision, such as tissue engineering. To address this, we developed a suite of materials to activate synNotch receptors and serve as generalizable platforms for generating user-defined material-to-cell signaling pathways. First, we demonstrate that synNotch ligands, such as GFP, can be conjugated to cell- generated ECM proteins via genetic engineering of fibronectin produced by fibroblasts. We then used enzymatic or click chemistry to covalently link synNotch ligands to gelatin polymers to activate synNotch receptors in cells grown on or within a hydrogel. To achieve microscale control over synNotch activation in cell monolayers, we microcontact printed synNotch ligands onto a surface. We also patterned tissues comprising cells with up to three distinct phenotypes by engineering cells with two distinct synthetic pathways and culturing them on surfaces microfluidically patterned with two synNotch ligands. We showcase this technology by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined spatial patterns towards the engineering of muscle tissue with prescribed vascular networks. Collectively, this suite of approaches extends the synNotch toolkit and provides novel avenues for spatially controlling cellular phenotypes in mammalian multicellular systems, with many broad applications in developmental biology, synthetic morphogenesis, human tissue modeling, and regenerative medicine.
RESUMO
To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.
Assuntos
Redes Reguladoras de Genes , Engenharia Genética , Animais , Transgenes/genética , Comunicação Celular , Mamíferos/genéticaRESUMO
Synthetic development is a nascent field of research that uses the tools of synthetic biology to design genetic programs directing cellular patterning and morphogenesis in higher eukaryotic cells, such as mammalian cells. One specific example of such synthetic genetic programs was based on cell-cell contact-dependent signaling using synthetic Notch pathways and was shown to drive the formation of multilayered spheroids by modulating cell-cell adhesion via differential expression of cadherin family proteins in a mouse fibroblast cell line (L929). The design method for these genetic programs relied on trial and error, which limited the number of possible circuits and parameter ranges that could be explored. Here, we build a parameterized computational framework that, given a cell-cell communication network driving changes in cell adhesion and initial conditions as inputs, predicts developmental trajectories. We first built a general computational framework where contact-dependent cell-cell signaling networks and changes in cell-cell adhesion could be designed in a modular fashion. We then used a set of available in vitro results (that we call the "training set" in analogy to similar pipelines in the machine learning field) to parameterize the computational model with values for adhesion and signaling. We then show that this parameterized model can qualitatively predict experimental results from a "testing set" of available in vitro data that varied the genetic network in terms of adhesion combinations, initial number of cells, and even changes to the network architecture. Finally, this parameterized model is used to recommend novel network implementation for the formation of a four-layered structure that has not been reported previously. The framework that we develop here could function as a testing ground to identify the reachable space of morphologies that can be obtained by controlling contact-dependent cell-cell communications and adhesion with these molecular tools and in this cellular system. Additionally, we discuss how the model could be expanded to include other forms of communication or effectors for the computational design of the next generation of synthetic developmental trajectories.
Assuntos
Redes Reguladoras de Genes , Biologia Sintética , Animais , Adesão Celular/genética , Redes Reguladoras de Genes/genética , Mamíferos , Camundongos , Morfogênese/genética , Transdução de Sinais/genética , Biologia Sintética/métodosRESUMO
Recent far-reaching advances in synthetic biology have yielded exciting tools for the creation of new materials. Conversely, advances in the fundamental understanding of soft-condensed matter, polymers and biomaterials offer new avenues to extend the reach of synthetic biology. The broad and exciting range of possible applications have substantial implications to address grand challenges in health, biotechnology and sustainability. Despite the potentially transformative impact that lies at the interface of synthetic biology and biomaterials, the two fields have, so far, progressed mostly separately. This Perspective provides a review of recent key advances in these two fields, and a roadmap for collaboration at the interface between the two communities. We highlight the near-term applications of this interface to the development of hierarchically structured biomaterials, from bioinspired building blocks to 'living' materials that sense and respond based on the reciprocal interactions between materials and embedded cells.
Assuntos
Materiais Biocompatíveis , Biologia Sintética , PolímerosRESUMO
Receptors enable cells to detect, process and respond to information about their environments. Over the past two decades, synthetic biologists have repurposed physical parts and concepts from natural receptors to engineer synthetic receptors. These technologies implement customized sense-and-respond programs that link a cell's interaction with extracellular and intracellular cues to user-defined responses. When combined with tools for information processing, these advances enable programming of sophisticated customized functions. In recent years, the library of synthetic receptors and their capabilities has substantially evolved-a term we employ here to mean systematic improvement and expansion. Here, we survey the existing mammalian synthetic biology toolkit of protein-based receptors and signal-processing components, highlighting efforts to evolve and integrate some of the foundational synthetic receptor systems. We then propose a generalized strategy for engineering and improving receptor systems to meet defined functional objectives called a 'metric-enabled approach for synthetic receptor engineering' (MEASRE).
Assuntos
Receptores Artificiais , Animais , Mamíferos , Biologia SintéticaRESUMO
Recently, developmental systems are investigated with increasing technological power. Still, open questions remain, especially concerning self-organization capacity and its control. Here, we present three areas where synthetic biology tools are used in top-down and bottom-up approaches for studying and constructing developmental systems. First, we discuss how synthetic biology tools can improve stem cell-based organoid models. Second, we discuss recent studies employing user-defined perturbations to study embryonic patterning in model species. Third, we present "toy models" of patterning and morphogenesis using synthetic genetic circuits in non-developmental systems. Finally, we discuss how these tools and approaches can specifically benefit the field of embryo models.
Assuntos
Desenvolvimento Embrionário , Biologia Sintética/métodos , Animais , Biologia do Desenvolvimento , Humanos , Modelos Biológicos , Mutação/genética , Organoides/fisiologiaRESUMO
Many metazoan organs are comprised of branching trees of epithelial tubes; how patterning occurs in these trees is a fundamental problem of development. Commonly, branch tips fill the volume of the organ approximately uniformly, e.g., in mammalian lung, airway branch tips are dispersed roughly uniformly throughout the volume of the lung. In contrast, in the developing metanephric kidney, the tips of the ureteric bud tree are located close to the outer surface of the kidney rather than filling the kidney. Here, we describe a simple alteration in the branching rules that accounts for the difference between the kidney pattern that leads to tips near the organ surface versus previously known patterns that lead to the branch tips being dispersed throughout the organ. We further use a simple toy model to deduce from first principles how this rule change accounts for the differences in the two types of trees.
Assuntos
Epitélio/embriologia , Rim/embriologia , Pulmão/embriologia , Animais , Padronização Corporal , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Rim/anatomia & histologia , Pulmão/anatomia & histologia , Modelos Biológicos , MorfogêneseRESUMO
Synthetic biology efforts began in simple single-cell systems, which were relatively easy to manipulate genetically (Cameron et al., 2014). The field grew exponentially in the last two decades, and one of the latest frontiers are synthetic developmental programs for multicellular mammalian systems (Black et al., 2017; Wieland and Fussenegger, 2012) to genetically control features such as patterning or morphogenesis. These programs rely on engineered cell-cell communications, multicellular gene regulatory networks and effector genes. Here, we contextualize the first of these synthetic developmental programs, examine molecular and computational tools that can be used to generate next generation versions, and present the general logic that underpins these approaches. These advances are exciting as they represent a novel way to address both control and understanding in the field of developmental biology and tissue development (Elowitz and Lim, 2010; Velazquez et al., 2018; White et al., 2018; Morsut, 2017). This field is just at the beginning, and it promises to be of major interest in the upcoming years of biomedical research.
Assuntos
Genes Sintéticos , Biologia Sintética , Animais , Comunicação Celular , Redes Reguladoras de Genes , MamíferosRESUMO
A new mechanism for the selection and differentiation of a single cell, based on mechanical competition with its neighbors and differential TAZ activity, is shown to be at play during zebrafish oogenesis to prevent polyspermy.
Assuntos
Comunicação Celular , Proteínas de Peixe-Zebra , Animais , Diferenciação Celular , Oogênese , Peixe-ZebraRESUMO
A common theme in the self-organization of multicellular tissues is the use of cell-cell signaling networks to induce morphological changes. We used the modular synNotch juxtacrine signaling platform to engineer artificial genetic programs in which specific cell-cell contacts induced changes in cadherin cell adhesion. Despite their simplicity, these minimal intercellular programs were sufficient to yield assemblies with hallmarks of natural developmental systems: robust self-organization into multidomain structures, well-choreographed sequential assembly, cell type divergence, symmetry breaking, and the capacity for regeneration upon injury. The ability of these networks to drive complex structure formation illustrates the power of interlinking cell signaling with cell sorting: Signal-induced spatial reorganization alters the local signals received by each cell, resulting in iterative cycles of cell fate branching. These results provide insights into the evolution of multicellularity and demonstrate the potential to engineer customized self-organizing tissues or materials.
Assuntos
Células Artificiais , Comunicação Celular , Engenharia Celular/métodos , Células , Morfogênese , Adesão Celular , Transdução de Sinais , Esferoides Celulares/citologia , Esferoides Celulares/fisiologiaRESUMO
Redirecting T cells to attack cancer using engineered chimeric receptors provides powerful new therapeutic capabilities. However, the effectiveness of therapeutic T cells is constrained by the endogenous T cell response: certain facets of natural response programs can be toxic, whereas other responses, such as the ability to overcome tumor immunosuppression, are absent. Thus, the efficacy and safety of therapeutic cells could be improved if we could custom sculpt immune cell responses. Synthetic Notch (synNotch) receptors induce transcriptional activation in response to recognition of user-specified antigens. We show that synNotch receptors can be used to sculpt custom response programs in primary T cells: they can drive a la carte cytokine secretion profiles, biased T cell differentiation, and local delivery of non-native therapeutic payloads, such as antibodies, in response to antigen. SynNotch T cells can thus be used as a general platform to recognize and remodel local microenvironments associated with diverse diseases.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Engenharia Celular , Neoplasias/terapia , Receptores Artificiais/imunologia , Receptores Notch/imunologia , Anticorpos/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Citotoxicidade Imunológica , Humanos , Imunoterapia/métodos , Ativação Linfocitária , Receptores Artificiais/genética , Receptores Notch/genética , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Células Th1/imunologia , Transcrição Gênica , Microambiente TumoralRESUMO
T cells can be re-directed to kill cancer cells using chimeric antigen receptors (CARs) or T cell receptors (TCRs). This approach, however, is constrained by the rarity of tumor-specific single antigens. Targeting antigens also found on bystander tissues can cause life-threatening adverse effects. A powerful way to enhance ON-target activity of therapeutic T cells is to engineer them to require combinatorial antigens. Here, we engineer a combinatorially activated T cell circuit in which a synthetic Notch receptor for one antigen induces the expression of a CAR for a second antigen. These dual-receptor AND-gate T cells are only armed and activated in the presence of dual antigen tumor cells. These T cells show precise therapeutic discrimination in vivo-sparing single antigen "bystander" tumors while efficiently clearing combinatorial antigen "disease" tumors. This type of precision dual-receptor circuit opens the door to immune recognition of a wider range of tumors. VIDEO ABSTRACT.
Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/metabolismo , Animais , Antígenos CD19/metabolismo , Antígenos de Superfície/imunologia , Efeito Espectador , Comunicação Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas Ligadas por GPI/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Mesotelina , Camundongos , Receptores Notch/metabolismoRESUMO
The Notch protein is one of the most mechanistically direct transmembrane receptors-the intracellular domain contains a transcriptional regulator that is released from the membrane when engagement of the cognate extracellular ligand induces intramembrane proteolysis. We find that chimeric forms of Notch, in which both the extracellular sensor module and the intracellular transcriptional module are replaced with heterologous protein domains, can serve as a general platform for generating novel cell-cell contact signaling pathways. Synthetic Notch (synNotch) pathways can drive user-defined functional responses in diverse mammalian cell types. Because individual synNotch pathways do not share common signaling intermediates, the pathways are functionally orthogonal. Thus, multiple synNotch receptors can be used in the same cell to achieve combinatorial integration of environmental cues, including Boolean response programs, multi-cellular signaling cascades, and self-organized cellular patterns. SynNotch receptors provide extraordinary flexibility in engineering cells with customized sensing/response behaviors to user-specified extracellular cues.