Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sleep Res ; : e14101, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974557

RESUMO

Light has many non-image-forming functions including modulation of pupil size and stimulation of alertness and cognition. Part of these non-image-forming effects may be mediated by the brainstem locus coeruleus. The processing of sensory inputs can be associated with a transient pupil dilation that is likely driven in part by the phasic activity of the locus coeruleus. In the present study, we aimed to characterise the task-evoked pupil response associated with auditory inputs under different light levels and across two cognitive tasks. We continuously monitored the pupil of 20 young healthy participants (mean [SD] 24.05 [4.0] years; 14 women) whilst they completed an attentional and an emotional auditory task whilst exposed to repeated 30-40-s blocks of light interleaved with darkness periods. Blocks could either consist of monochromatic orange light (0.16 melanopic equivalent daylight illuminance (EDI) lux) or blue-enriched white light of three different levels [37, 92, 190 melanopic EDI lux; 6500 K]. For the analysis, 15 and then 14 participants were included in the attentional and emotional tasks, respectively. Generalised linear mixed models showed a significant main effect of light level on the task-evoked pupil responses triggered by the attentional and emotional tasks (p ≤ 0.0001). The impact of light was different for the target versus non-target stimulus of the attentional task but was not different for the emotional and neutral stimulus of the emotional task. There is a smaller sustained pupil size during brighter light blocks but, a higher light level triggers a stronger task-evoked pupil response to auditory stimulation, presumably through the recruitment of the locus coeruleus.

2.
J Sleep Res ; : e14085, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904313

RESUMO

Light triggers numerous non-image-forming, or non-visual, biological effects. The brain correlates of these non-image-forming effects have been investigated, notably using magnetic resonance imaging and short light exposures varying in irradiance and spectral quality. However, it is not clear whether non-image-forming responses estimation may be biased by having light in sequential blocks, for example, through a potential carryover effect of one light onto the next. We reasoned that pupil light reflex was an easy readout of one of the non-image-forming effects of light that could be used to address this issue. We characterised the sustained pupil light reflex in 13-16 healthy young individuals under short light exposures during three distinct cognitive processes (executive, emotional and attentional). Light conditions pseudo-randomly alternated between monochromatic orange light (0.16 melanopic equivalent daylight illuminance lux) and polychromatic blue-enriched white light of three different levels (37, 92, 190 melanopic equivalent daylight illuminance lux). As expected, higher melanopic irradiance was associated with larger sustained pupil light reflex in each cognitive domain. This result was stable over the light sequence under higher melanopic irradiance levels compared with lower ones. Exploratory frequency-domain analyses further revealed that sustained pupil light reflex was more variable under lower melanopic irradiance levels. Importantly, sustained pupil light reflex varied across tasks independently of the light condition, pointing to a potential impact of light history and/or cognitive context on sustained pupil light reflex. Together, our results emphasise that the distinct contribution and adaptation of the different retinal photoreceptors influence the non-image-forming effects of light and therefore potentially their brain correlates.

3.
Commun Biol ; 6(1): 945, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37714936

RESUMO

Exposure to blue wavelength light stimulates alertness and performance by modulating a widespread set of task-dependent cortical and subcortical areas. How light affects the crosstalk between brain areas to trigger this stimulating effect is not established. Here we record the brain activity of 19 healthy young participants (24.05±2.63; 12 women) while they complete an auditory attentional task in darkness or under an active (blue-enriched) or a control (orange) light, in an ultra-high-field 7 Tesla MRI scanner. We test if light modulates the effective connectivity between an area of the posterior associative thalamus, encompassing the pulvinar, and the intraparietal sulcus (IPS), key areas in the regulation of attention. We find that only the blue-enriched light strengthens the connection from the posterior thalamus to the IPS. To the best of our knowledge, our results provide the first empirical data supporting that blue wavelength light affects ongoing non-visual cognitive activity by modulating task-dependent information flow from subcortical to cortical areas.


Assuntos
Luz , Tálamo , Humanos , Feminino , Tálamo/diagnóstico por imagem , Reações Cruzadas , Voluntários Saudáveis
4.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37698926

RESUMO

BACKGROUNDThe locus coeruleus (LC) is the primary source of norepinephrine in the brain and regulates arousal and sleep. Animal research shows that it plays important roles in the transition between sleep and wakefulness, and between slow wave sleep and rapid eye movement sleep (REMS). It is unclear, however, whether the activity of the LC predicts sleep variability in humans.METHODSWe used 7-Tesla functional MRI, sleep electroencephalography (EEG), and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 33 healthy younger (~22 years old; 28 women, 5 men) and 19 older (~61 years old; 14 women, 5 men) individuals.RESULTSWe found that, in older but not in younger participants, higher LC activity, as probed during an auditory attentional task, was associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS. The results remained robust even when accounting for the age-related changes in the integrity of the LC.CONCLUSIONThese findings suggest that LC activity correlates with the perception of the sleep quality and an essential oscillatory mode of REMS, and we found that the LC may be an important target in the treatment of sleep- and age-related diseases.FUNDINGThis work was supported by Fonds National de la Recherche Scientifique (FRS-FNRS, T.0242.19 & J. 0222.20), Action de Recherche Concertée - Fédération Wallonie-Bruxelles (ARC SLEEPDEM 17/27-09), Fondation Recherche Alzheimer (SAO-FRA 2019/0025), ULiège, and European Regional Development Fund (Radiomed & Biomed-Hub).


Assuntos
Locus Cerúleo , Sono REM , Masculino , Animais , Humanos , Feminino , Idoso , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/fisiologia , Vigília/fisiologia , Qualidade do Sono , Sono/fisiologia
5.
Front Neuroimaging ; 2: 1207844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554637

RESUMO

Introduction: The brainstem locus coeruleus (LC) influences a broad range of brain processes, including cognition. The so-called LC contrast is an accepted marker of the integrity of the LC that consists of a local hyperintensity on specific Magnetic Resonance Imaging (MRI) structural images. The small size of the LC has, however, rendered its functional characterization difficult in humans, including in aging. A full characterization of the structural and functional characteristics of the LC in healthy young and late middle-aged individuals is needed to determine the potential roles of the LC in different medical conditions. Here, we wanted to determine whether the activation of the LC in a mismatch negativity task changes in aging and whether the LC functional response was associated to the LC contrast. Methods: We used Ultra-High Field (UHF) 7-Tesla functional MRI (fMRI) to record brain response during an auditory oddball task in 53 healthy volunteers, including 34 younger (age: 22.15y ± 3.27; 29 women) and 19 late middle-aged (age: 61.05y ± 5.3; 14 women) individuals. Results: Whole-brain analyses confirmed brain responses in the typical cortical and subcortical regions previously associated with mismatch negativity. When focusing on the brainstem, we found a significant response in the rostral part of the LC probability mask generated based on individual LC images. Although bilateral, the activation was more extensive in the left LC. Individual LC activity was not significantly different between young and late middle-aged individuals. Importantly, while the LC contrast was higher in older individuals, the functional response of the LC was not significantly associated with its contrast. Discussion: These findings may suggest that the age-related alterations of the LC structural integrity may not be related to changes in its functional response. The results further suggest that LC responses may remain stable in healthy individuals aged 20 to 70.

6.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993680

RESUMO

The locus coeruleus (LC) is the primary source of norepinephrine (NE) in the brain, and the LC-NE system is involved in regulating arousal and sleep. It plays key roles in the transition between sleep and wakefulness, and between slow wave sleep (SWS) and rapid eye movement sleep (REMS). However, it is not clear whether the LC activity during the day predicts sleep quality and sleep properties during the night, and how this varies as a function of age. Here, we used 7 Tesla functional Magnetic Resonance Imaging (7T fMRI), sleep electroencephalography (EEG) and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 52 healthy younger (N=33; ~22y; 28 women) and older (N=19; ~61y; 14 women) individuals. We find that, in older, but not in younger participants, higher LC activity, as probed during an auditory mismatch negativity task, is associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS (4-8Hz), which are two sleep parameters significantly correlated in our sample of older individuals. The results remain robust even when accounting for the age-related changes in the integrity of the LC. These findings suggest that the activity of the LC may contribute to the perception of the sleep quality and to an essential oscillatory mode of REMS, and that the LC may be an important target in the treatment of sleep disorders and age-related diseases.

7.
Neurobiol Dis ; 175: 105924, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371058

RESUMO

Insomnia disorder (ID) is the second most common neuropsychiatric disorder. Its socioeconomic burden is enormous while diagnosis and treatment are difficult. A novel approach that reveals associations between insomnia genetic propensity and sleep phenotypes in youth may help understand the core of the disease isolated from comorbidities and pave the way for new treatments. We obtained quantitative nocturnal sleep electroencephalogram (EEG) features in 456 participants (18-31y, 49 women). Sleep EEG was recorded during a baseline night following at least 7 days of regular sleep times. We then assessed daytime sleep onset latency in a subsample of N = 359 men exposed to manipulations affecting sleep pressure. We sampled saliva or blood for polygenic risk score (PRS) determination. The PRS for ID was computed based on genome-wide common single nucleotide polymorphism assessments. Participants also completed a battery of behavioral and cognitive tests. The analyses revealed that the PRS for ID was negatively associated with cumulated EEG power in the delta (0.5-4 Hz) and theta (4-8 Hz) bands across rapid eye movement (REM) and non-REM sleep (p ≤ .0026; ß ≥ -0.13) controlling for age, sex and BMI. The PRS for ID was also negatively associated with daytime likelihood of falling asleep (ß = -0.19, p = .0009). Other explorations for associations with non-baseline-nights, cognitive measures, and mood did not yield significant results. These results propose that the need or the ability to fall asleep and to generate slow brain activity during sleep may constitute the core sleep-related risk factors for developing ID.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Feminino , Humanos , Distúrbios do Início e da Manutenção do Sono/genética , Sono/genética , Sono REM , Eletroencefalografia/métodos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA