Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
medRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699362

RESUMO

Importance: Infant alertness and neurologic changes are assessed by exam, which can be intermittent and subjective. Reliable, continuous methods are needed. Objective: We hypothesized that our computer vision method to track movement, pose AI, could predict neurologic changes. Design: Retrospective observational study from 2021-2022. Setting: A level four urban neonatal intensive care unit (NICU). Participants: Infants with corrected age ≤1 year, comprising 115 patients with 4,705 hours of video data linked to electroencephalograms (EEG), including 46% female and 25.2% white non-Hispanic. Exposures: Pose AI prediction of anatomic landmark position and an XGBoost classifier trained on one-minute variance in pose. Main outcomes and measures: Outcomes were cerebral dysfunction, diagnosed from EEG readings by an epileptologist, and sedation, defined by the administration of sedative medications. Measures of algorithm performance were receiver operating characteristic-area under the curves (ROC-AUCs) on cross-validation and on two test datasets comprised of held-out infants and held-out video frames from infants used in training. Results: Infant pose was accurately predicted in cross-validation, held-out frames, and held-out infants (respective ROC-AUCs 0.94, 0.83, 0.89). Median movement increased with age and, after accounting for age, was lower with sedative medications and in infants with cerebral dysfunction (all P<5×10-3, 10,000 permutations). Sedation prediction had high performance on cross-validation, held-out frames, and held-out infants (ROC-AUCs 0.90, 0.91, 0.87), as did prediction of cerebral dysfunction (ROC-AUCs 0.91, 0.90, 0.76). Conclusions and Relevance: We used pose AI to predict sedation and cerebral dysfunction in 4,705 hours of video from a large, diverse cohort of infants. Pose AI may offer a scalable, minimally invasive method for neuro-telemetry in the NICU.

2.
medRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746151

RESUMO

While genome sequencing has transformed medicine by elucidating the genetic underpinnings of both rare and common complex disorders, its utility to predict clinical outcomes remains understudied. Here, we used artificial intelligence (AI) technologies to explore the predictive value of genome sequencing in forecasting clinical outcomes following surgery for congenital heart defects (CHD). We report results for a cohort of 2,253 CHD patients from the Pediatric Cardiac Genomics Consortium with a broad range of complex heart defects, pre- and post-operative clinical variables and exome sequencing. Damaging genotypes in chromatin-modifying and cilia-related genes were associated with an elevated risk of adverse post-operative outcomes, including mortality, cardiac arrest and prolonged mechanical ventilation. The impact of damaging genotypes was further amplified in the context of specific CHD phenotypes, surgical complexity and extra-cardiac anomalies. The absence of a damaging genotype in chromatin-modifying and cilia-related genes was also informative, reducing the risk for adverse postoperative outcomes. Thus, genome sequencing enriches the ability to forecast outcomes following congenital cardiac surgery.

3.
J Perinatol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499751

RESUMO

OBJECTIVE: To evaluate patterns of genetic testing among infants with CHD at a tertiary care center. STUDY DESIGN: We conducted a retrospective observational cohort study of infants in the NICU with suspicion of a genetic disorder. 1075 of 7112 infants admitted to BCH had genetic evaluation including 329 with CHD and 746 without CHD. 284 of 525 infants with CHD admitted to CMHH had genetic evaluation. Patterns of testing and diagnoses were compared. RESULTS: The rate of diagnosis after testing was similar for infants with or without CHD (38% [121/318] vs. 36% [246/676], p = 0.14). In a multiple logistic regression, atrioventricular septal defects were most high associated with genetic diagnosis (odds ratio 29.99, 95% confidence interval 2.69-334.12, p < 0.001). CONCLUSIONS: Infants with suspicion of a genetic disorder with CHD had similar rates of molecular diagnosis as those without CHD. These results support a role for genetic testing among NICU infants with CHD.

4.
Nat Genet ; 56(3): 420-430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38378865

RESUMO

Rare coding mutations cause ∼45% of congenital heart disease (CHD). Noncoding mutations that perturb cis-regulatory elements (CREs) likely contribute to the remaining cases, but their identification has been problematic. Using a lentiviral massively parallel reporter assay (lentiMPRA) in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we functionally evaluated 6,590 noncoding de novo variants (ncDNVs) prioritized from the whole-genome sequencing of 750 CHD trios. A total of 403 ncDNVs substantially affected cardiac CRE activity. A majority increased enhancer activity, often at regions with undetectable reference sequence activity. Of ten DNVs tested by introduction into their native genomic context, four altered the expression of neighboring genes and iPSC-CM transcriptional state. To prioritize future DNVs for functional testing, we used the MPRA data to develop a regression model, EpiCard. Analysis of an independent CHD cohort by EpiCard found enrichment of DNVs. Together, we developed a scalable system to measure the effect of ncDNVs on CRE activity and deployed it to systematically assess the contribution of ncDNVs to CHD.


Assuntos
Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiopatias Congênitas/genética , Sequências Reguladoras de Ácido Nucleico , Mutação , Miócitos Cardíacos
5.
Ann Clin Transl Neurol ; 11(2): 278-290, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38009418

RESUMO

OBJECTIVE: Persons with congenital heart disease (CHD) are at increased risk of neurodevelopmental disabilities, including impairments to executive function. Sulcal pattern features correlate with executive function in adolescents with single-ventricle heart disease and tetralogy of Fallot. However, the interaction of sulcal pattern features with genetic and participant factors in predicting executive dysfunction is unknown. METHODS: We studied sulcal pattern features, participant factors, and genetic risk for executive function impairment in a cohort with multiple CHD types using stepwise linear regression and machine learning. RESULTS: Genetic factors, including predicted damaging de novo or rare inherited variants in neurodevelopmental disabilities risk genes, apolipoprotein E genotype, and principal components of sulcal pattern features were associated with executive function measures after adjusting for age at testing, sex, mother's education, and biventricular versus single-ventricle CHD in a linear regression model. Using regression trees and bootstrap validation, younger participant age and larger alterations in sulcal pattern features were consistently identified as important predictors of decreased cognitive flexibility with left hemisphere graph topology often selected as the most important predictor. Inclusion of both sulcal pattern and genetic factors improved model fit compared to either alone. INTERPRETATION: We conclude that sulcal measures remain important predictors of cognitive flexibility, and the model predicting executive outcomes is improved by inclusion of potential genetic sources of neurodevelopmental risk. If confirmed, measures of sulcal patterning may serve as early imaging biomarkers to identify those at heightened risk for future neurodevelopmental disabilities.


Assuntos
Função Executiva , Cardiopatias Congênitas , Adolescente , Humanos , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/psicologia
6.
Front Cardiovasc Med ; 10: 1249605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840956

RESUMO

Objective: Eighty percent of patients with a diagnosis of tetralogy of Fallot (TOF) do not have a known genetic etiology or syndrome. We sought to identify key molecular pathways and biological processes that are enriched in non-syndromic TOF, the most common form of cyanotic congenital heart disease, rather than single driver genes to elucidate the pathogenesis of this disease. Methods: We undertook exome sequencing of 362 probands with non-syndromic TOF and their parents within the Pediatric Cardiac Genomics Consortium (PCGC). We identified rare (minor allele frequency <1 × 10-4), de novo variants to ascertain pathways and processes affected in this population to better understand TOF pathogenesis. Pathways and biological processes enriched in the PCGC TOF cohort were compared to 317 controls without heart defects (and their parents) from the Simons Foundation Autism Research Initiative (SFARI). Results: A total of 120 variants in 117 genes were identified as most likely to be deleterious, with CHD7, CLUH, UNC13C, and WASHC5 identified in two probands each. Gene ontology analyses of these variants using multiple bioinformatic tools demonstrated significant enrichment in processes including cell cycle progression, chromatin remodeling, myocyte contraction and calcium transport, and development of the ventricular septum and ventricle. There was also a significant enrichment of target genes of SOX9, which is critical in second heart field development and whose loss results in membranous ventricular septal defects related to disruption of the proximal outlet septum. None of these processes was significantly enriched in the SFARI control cohort. Conclusion: Innate molecular defects in cardiac progenitor cells and genes related to their viability and contractile function appear central to non-syndromic TOF pathogenesis. Future research utilizing our results is likely to have significant implications in stratification of TOF patients and delivery of personalized clinical care.

7.
medRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790370

RESUMO

Neonatal infections due to Paenibacillus species have increasingly been reported over the last few years. We performed a structured literature review of human Paenibacillus infections in infants and adults to compare the epidemiology of infections between these distinct patient populations. Thirty-nine reports describing 176 infections met our inclusion criteria and were included. There were 37 Paenibacillus infections occurring in adults caused by 23 species. The clinical presentations of infections were quite variable. In contrast, infections in infants were caused by only 3 species: P. thiaminolyticus (112/139, 80%), P. alvei (2/139, 1%) and P. dendritiformis (2/139, 1%). All of the infants with Paenibacillus infection presented with a sepsis syndrome or meningitis, often complicated by extensive cerebral destruction and hydrocephalus. Outcomes were commonly poor with 17% (24/139) mortality. Cystic encephalomalacia due to brain destruction was common in both Ugandan and American cases and 92/139 (66%) required surgical management of hydrocephalus following their infection. Paenibacillus infections are likely underappreciated in infants and effective treatments are urgently needed.

8.
EBioMedicine ; 94: 104673, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392599

RESUMO

BACKGROUND: Therapeutic hypothermia (TH) is standard of care for moderate to severe neonatal hypoxic ischemic encephalopathy (HIE) but many survivors still suffer lifelong disabilities and benefits of TH for mild HIE are under active debate. Development of objective diagnostics, with sensitivity to mild HIE, are needed to select, guide, and assess response to treatment. The objective of this study was to determine if cerebral oxygen metabolism (CMRO2) in the days after TH is associated with 18-month neurodevelopmental outcomes as the first step in evaluating CMRO2's potential as a diagnostic for HIE. Secondary objectives were to compare associations with clinical exams and characterise the relationship between CMRO2 and temperature during TH. METHODS: This was a prospective, multicentre, observational, cohort study of neonates clinically diagnosed with HIE and treated with TH recruited from the tertiary neonatal intensive care units (NICUs) of Boston Children's Hospital, Brigham and Women's Hospital, and Beth Israel Deaconess Medical Center between December 2015 and October 2019 with follow-up to 18 months. In total, 329 neonates ≥34 weeks gestational age admitted with perinatal asphyxia and suspected HIE were identified. 179 were approached, 103 enrolled, 73 received TH, and 64 were included. CMRO2 was measured at the NICU bedside by frequency-domain near-infrared and diffuse correlation spectroscopies (FDNIRS-DCS) during the late phases of hypothermia (C), rewarming (RW) and after return to normothermia (NT). Additional variables were body temperature and clinical neonatal encephalopathy (NE) scores, as well as findings from magnetic resonance imaging (MRI) and spectroscopy (MRS). Primary outcome was the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) at 18 months, normed (SD) to 100 (15). FINDINGS: Data quality for 58 neonates was sufficient for analysis. CMRO2 changed by 14.4% per °C (95% CI, 14.2-14.6) relative to its baseline at NT while cerebral tissue oxygen extraction fraction (cFTOE) changed by only 2.2% per °C (95% CI, 2.1-2.4) for net changes from C to NT of 91% and 8%, respectively. Follow-up data for 2 were incomplete, 33 declined and 1 died, leaving 22 participants (mean [SD] postnatal age, 19.1 [1.2] month; 11 female) with mild to moderate HIE (median [IQR] NE score, 4 [3-6]) and 21 (95%) with BSID-III scores >85 at 18 months. CMRO2 at NT was positively associated with cognitive and motor composite scores (ß (SE) = 4.49 (1.55) and 2.77 (1.00) BSID-III points per 10-10 moL/dl × mm2/s, P = 0.009 and P = 0.01 respectively; linear regression); none of the other measures were associated with the neurodevelopmental outcomes. INTERPRETATION: Point of care measures of CMRO2 in the NICU during C and RW showed dramatic changes and potential to assess individual response to TH. CMRO2 following TH outperformed conventional clinical evaluations (NE score, cFTOE, and MRI/MRS) at predicting cognitive and motor outcomes at 18 months for mild to moderate HIE, providing a promising objective, physiologically-based diagnostic for HIE. FUNDING: This clinical study was funded by an NIH grant from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States (R01HD076258).


Assuntos
Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Doenças do Recém-Nascido , Recém-Nascido , Lactente , Gravidez , Humanos , Feminino , Adulto Jovem , Adulto , Estudos de Coortes , Estudos Prospectivos , Hipóxia-Isquemia Encefálica/diagnóstico , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/terapia , Oxigênio/metabolismo , Hipotermia Induzida/métodos
9.
Clin Infect Dis ; 77(5): 768-775, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37279589

RESUMO

BACKGROUND: Paenibacillus thiaminolyticus may be an underdiagnosed cause of neonatal sepsis. METHODS: We prospectively enrolled a cohort of 800 full-term neonates presenting with a clinical diagnosis of sepsis at 2 Ugandan hospitals. Quantitative polymerase chain reaction specific to P. thiaminolyticus and to the Paenibacillus genus were performed on the blood and cerebrospinal fluid (CSF) of 631 neonates who had both specimen types available. Neonates with Paenibacillus genus or species detected in either specimen type were considered to potentially have paenibacilliosis, (37/631, 6%). We described antenatal, perinatal, and neonatal characteristics, presenting signs, and 12-month developmental outcomes for neonates with paenibacilliosis versus clinical sepsis due to other causes. RESULTS: Median age at presentation was 3 days (interquartile range 1, 7). Fever (92%), irritability (84%), and clinical signs of seizures (51%) were common. Eleven (30%) had an adverse outcome: 5 (14%) neonates died during the first year of life; 5 of 32 (16%) survivors developed postinfectious hydrocephalus (PIH) and 1 (3%) additional survivor had neurodevelopmental impairment without hydrocephalus. CONCLUSIONS: Paenibacillus species was identified in 6% of neonates with signs of sepsis who presented to 2 Ugandan referral hospitals; 70% were P. thiaminolyticus. Improved diagnostics for neonatal sepsis are urgently needed. Optimal antibiotic treatment for this infection is unknown but ampicillin and vancomycin will be ineffective in many cases. These results highlight the need to consider local pathogen prevalence and the possibility of unusual pathogens when determining antibiotic choice for neonatal sepsis.


Assuntos
Hidrocefalia , Sepse Neonatal , Paenibacillus , Sepse , Recém-Nascido , Humanos , Feminino , Gravidez , Uganda/epidemiologia , Sepse/complicações , Sepse/epidemiologia , Sepse/tratamento farmacológico , Antibacterianos/uso terapêutico , Progressão da Doença
10.
Transl Pediatr ; 12(5): 1028-1040, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37305724

RESUMO

Advances in prenatal/neonatal genetic screening practices and next generation sequencing (NGS) technologies have made the detection of molecular causes of pediatric diseases increasingly more affordable, accessible, and rapid in return of results. In the past, families searching for answers often required diagnostic journeys leading to delays in targeted care and missed diagnoses. Non-invasive prenatal NGS is now used routinely in pregnancy, significantly altering the obstetric approach to early screening and evaluation of fetal anomalies. Similarly, exome sequencing (ES) and genome sequencing (GS) were once only available for research but are now used in patient care, impacting neonatal care and the field of neonatology as a whole. In this review we will summarize the growing body of literature on the role of ES/GS in prenatal/neonatal care, specifically in neonatal intensive care units (NICU), and the molecular diagnostic yield. Furthermore, we will discuss the impact of advances in genetic testing in prenatal/neonatal care and discuss challenges faced by clinicians and families. Clinical application of NGS has come with many challenges in counseling families on interpretation of diagnostic results and incidental findings, as well as re-interpretation of prior genetic test results. How genetic results may influence medical decision-making is highly nuanced and needs further study. The ethics of parental consent and disclosure of genetic conditions with limited therapeutic options continue to be debated in the medical genetics community. While these questions remain unanswered, the benefits of a standardized approach to genetic testing in the NICU will be highlighted by two case vignettes.

11.
Lancet Microbe ; 4(8): e601-e611, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348522

RESUMO

BACKGROUND: Paenibacillus thiaminolyticus is a cause of postinfectious hydrocephalus among Ugandan infants. To determine whether Paenibacillus spp is a pathogen in neonatal sepsis, meningitis, and postinfectious hydrocephalus, we aimed to complete three separate studies of Ugandan infants. The first study was on peripartum prevalence of Paenibacillus in mother-newborn pairs. The second study assessed Paenibacillus in blood and cerebrospinal fluid (CSF) from neonates with sepsis. The third study assessed Paenibacillus in CSF from infants with hydrocephalus. METHODS: In this observational study, we recruited mother-newborn pairs with and without maternal fever (mother-newborn cohort), neonates (aged ≤28 days) with sepsis (sepsis cohort), and infants (aged ≤90 days) with hydrocephalus with and without a history of neonatal sepsis and meningitis (hydrocephalus cohort) from three hospitals in Uganda between Jan 13, 2016 and Oct 2, 2019. We collected maternal blood, vaginal swabs, and placental samples and the cord from the mother-newborn pairs, and blood and CSF from neonates and infants. Bacterial content of infant CSF was characterised by 16S rDNA sequencing. We analysed all samples using quantitative PCR (qPCR) targeting either the Paenibacillus genus or Paenibacillus thiaminolyticus spp. We collected cranial ultrasound and computed tomography images in the subset of participants represented in more than one cohort. FINDINGS: No Paenibacillus spp were detected in vaginal, maternal blood, placental, or cord blood specimens from the mother-newborn cohort by qPCR. Paenibacillus spp was detected in 6% (37 of 631 neonates) in the sepsis cohort and, of these, 14% (5 of 37 neonates) developed postinfectious hydrocephalus. Paenibacillus was the most enriched bacterial genera in postinfectious hydrocephalus CSF (91 [44%] of 209 patients) from the hydrocephalus cohort, with 16S showing 94% accuracy when validated by qPCR. Imaging showed progression from Paenibacillus spp-related meningitis to postinfectious hydrocephalus over 1-3 months. Patients with postinfectious hydrocephalus with Paenibacillus spp infections were geographically clustered. INTERPRETATION: Paenibacillus spp causes neonatal sepsis and meningitis in Uganda and is the dominant cause of subsequent postinfectious hydrocephalus. There was no evidence of transplacental transmission, and geographical evidence was consistent with an environmental source of neonatal infection. Further work is needed to identify routes of infection and optimise treatment of neonatal Paenibacillus spp infection to lessen the burden of morbidity and mortality. FUNDING: National Institutes of Health and Boston Children's Hospital Office of Faculty Development.


Assuntos
Hidrocefalia , Meningite , Sepse Neonatal , Paenibacillus , Sepse , Estados Unidos , Recém-Nascido , Criança , Humanos , Lactente , Feminino , Gravidez , Uganda/epidemiologia , Sepse Neonatal/complicações , Placenta , Paenibacillus/genética , Sepse/complicações , Sepse/microbiologia , Meningite/complicações , Hidrocefalia/epidemiologia , Hidrocefalia/etiologia , Estudos de Casos e Controles
12.
Circ Genom Precis Med ; 16(3): 224-231, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37165897

RESUMO

BACKGROUND: Known genetic causes of congenital heart disease (CHD) explain <40% of CHD cases, and interpreting the clinical significance of variants with uncertain functional impact remains challenging. We aim to improve diagnostic classification of variants in patients with CHD by assessing the impact of noncanonical splice region variants on RNA splicing. METHODS: We tested de novo variants from trio studies of 2649 CHD probands and their parents, as well as rare (allele frequency, <2×10-6) variants from 4472 CHD probands in the Pediatric Cardiac Genetics Consortium through a combined computational and in vitro approach. RESULTS: We identified 53 de novo and 74 rare variants in CHD cases that alter splicing and thus are loss of function. Of these, 77 variants are in known dominant, recessive, and candidate CHD genes, including KMT2D and RBFOX2. In 1 case, we confirmed the variant's predicted impact on RNA splicing in RNA transcripts from the proband's cardiac tissue. Two probands were found to have 2 loss-of-function variants for recessive CHD genes HECTD1 and DYNC2H1. In addition, SpliceAI-a predictive algorithm for altered RNA splicing-has a positive predictive value of ≈93% in our cohort. CONCLUSIONS: Through assessment of RNA splicing, we identified a new loss-of-function variant within a CHD gene in 78 probands, of whom 69 (1.5%; n=4472) did not have a previously established genetic explanation for CHD. Identification of splice-altering variants improves diagnostic classification and genetic diagnoses for CHD. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT01196182.


Assuntos
Cardiopatias Congênitas , RNA , Criança , Humanos , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Mutação , Splicing de RNA , Frequência do Gene , Fatores de Processamento de RNA/genética , Proteínas Repressoras/genética
13.
J Perinatol ; 43(7): 958-962, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37179381

RESUMO

Congenital heart disease (CHD) and prematurity are leading causes of infant mortality in the United States. Infants with CHD born prematurely are often described as facing "double jeopardy" with vulnerability from their underlying heart disease and from organ immaturity. They endure additional complications of developing in the extrauterine environment while healing from interventions for heart disease. While morbidity and mortality for neonates with CHD have declined over the past decade, preterm neonates with CHD remain at higher risk for adverse outcomes. Less is known about their neurodevelopmental and functional outcomes. In this perspective paper, we review the prevalence of preterm birth among infants with CHD, highlight the medical complexity of these infants, and emphasize the importance of exploring outcomes beyond survival. We focus on current knowledge regarding overlaps in the mechanisms of neurodevelopmental impairment associated with CHD and prematurity and discuss future directions for improving neurodevelopmental outcomes.


Assuntos
Cardiopatias Congênitas , Nascimento Prematuro , Lactente , Feminino , Recém-Nascido , Humanos , Estados Unidos/epidemiologia , Recém-Nascido Prematuro , Hospitalização , Morbidade , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/epidemiologia
14.
Am J Med Genet A ; 191(5): 1222-1226, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36722669

RESUMO

Tethered cord syndrome (TCS) is characterized by leg pain and weakness, bladder and bowel dysfunction, orthopedic malformations such as scoliosis, and motor deficits caused by the fixation of the spinal cord to surrounding tissues. TCS is surgically treatable and often found in conjunction with other syndromic conditions. KBG syndrome is caused by variants in the ANKRD11 gene and is characterized by short stature, developmental delay, macrodontia, and a triangular face. The current study explores the prevalence of TCS in pediatric KBG patients and their associated signs and symptoms. Patients with KBG were surveyed for signs and symptoms associated with TCS and asked if they had been diagnosed with the syndrome. We found a high proportion of patients diagnosed with (11%) or being investigated for TCS (24%), emphasizing the need to further characterize the comorbid syndromes. No signs or symptoms clearly emerged as indicative of TCS in KBG patients, but some the prevalence of some signs and symptoms varied by sex. Male KBG patients with diagnosed TCS were more likely to have coordination issues and global delay/brain fog than their female counterparts. Understanding the presentation of TCS in KBG patients is critical for timely diagnosis and treatment.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Defeitos do Tubo Neural , Anormalidades Dentárias , Humanos , Masculino , Criança , Feminino , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/genética , Fácies , Fenótipo , Proteínas Repressoras/genética , Defeitos do Tubo Neural/complicações , Defeitos do Tubo Neural/diagnóstico , Defeitos do Tubo Neural/epidemiologia , Síndrome
15.
Circ Genom Precis Med ; 16(2): e003791, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803080

RESUMO

BACKGROUND: Congenital heart disease (CHD) is the most common major congenital anomaly and causes significant morbidity and mortality. Epidemiologic evidence supports a role of genetics in the development of CHD. Genetic diagnoses can inform prognosis and clinical management. However, genetic testing is not standardized among individuals with CHD. We sought to develop a list of validated CHD genes using established methods and to evaluate the process of returning genetic results to research participants in a large genomic study. METHODS: Two-hundred ninety-five candidate CHD genes were evaluated using a ClinGen framework. Sequence and copy number variants involving genes in the CHD gene list were analyzed in Pediatric Cardiac Genomics Consortium participants. Pathogenic/likely pathogenic results were confirmed on a new sample in a clinical laboratory improvement amendments-certified laboratory and disclosed to eligible participants. Adult probands and parents of probands who received results were asked to complete a post-disclosure survey. RESULTS: A total of 99 genes had a strong or definitive clinical validity classification. Diagnostic yields for copy number variants and exome sequencing were 1.8% and 3.8%, respectively. Thirty-one probands completed clinical laboratory improvement amendments-confirmation and received results. Participants who completed postdisclosure surveys reported high personal utility and no decision regret after receiving genetic results. CONCLUSIONS: The application of ClinGen criteria to CHD candidate genes yielded a list that can be used to interpret clinical genetic testing for CHD. Applying this gene list to one of the largest research cohorts of CHD participants provides a lower bound for the yield of genetic testing in CHD.


Assuntos
Cardiopatias Congênitas , Adulto , Criança , Humanos , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Testes Genéticos , Coração , Genômica , Variações do Número de Cópias de DNA
16.
JAMA Netw Open ; 6(1): e2253191, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36701153

RESUMO

Importance: Neurodevelopmental disabilities are commonly associated with congenital heart disease (CHD), but medical and sociodemographic factors explain only one-third of the variance in outcomes. Objective: To examine whether potentially damaging de novo variants (dDNVs) in genes not previously linked to neurodevelopmental disability are associated with neurologic outcomes in CHD and, post hoc, whether some dDNVs or rare putative loss-of-function variants (pLOFs) in specific gene categories are associated with outcomes. Design, Setting, and Participants: This cross-sectional study was conducted from September 2017 to June 2020 in 8 US centers. Inclusion criteria were CHD, age 8 years or older, and available exome sequencing data. Individuals with pathogenic gene variants in known CHD- or neurodevelopment-related genes were excluded. Cases and controls were frequency-matched for CHD class, age group, and sex. Exposures: Heterozygous for (cases) or lacking (controls) dDNVs in genes not previously associated with neurodevelopmental disability. Participants were separately stratified as heterozygous or not heterozygous for dDNVs and/or pLOFs in 4 gene categories: chromatin modifying, constrained, high level of brain expression, and neurodevelopmental risk. Main Outcomes and Measures: Main outcomes were neurodevelopmental assessments of academic achievement, intelligence, fine motor skills, executive function, attention, memory, social cognition, language, adaptive functioning, and anxiety and depression, as well as 7 structural, diffusion, and functional brain magnetic resonance imaging metrics. Results: The study cohort included 221 participants in the post hoc analysis and 219 in the case-control analysis (109 cases [49.8%] and 110 controls [50.2%]). Of those 219 participants (median age, 15.0 years [IQR, 10.0-21.2 years]), 120 (54.8%) were male. Cases and controls had similar primary outcomes (reading composite, spelling, and math computation on the Wide Range Achievement Test, Fourth Edition) and secondary outcomes. dDNVs and/or pLOFs in chromatin-modifying genes were associated with lower mean (SD) verbal comprehension index scores (91.4 [20.4] vs 103.4 [17.8]; P = .01), Social Responsiveness Scale, Second Edition, scores (57.3 [17.2] vs 49.4 [11.2]; P = .03), and Wechsler Adult Intelligence Scale, Fourth Edition, working memory scores (73.8 [16.4] vs 97.2 [15.7]; P = .03), as well as higher likelihood of autism spectrum disorder (28.6% vs 5.2%; P = .01). dDNVs and/or pLOFs in constrained genes were associated with lower mean (SD) scores on the Wide Range Assessment of Memory and Learning, Second Edition (immediate story memory: 9.7 [3.7] vs 10.7 [3.0]; P = .03; immediate picture memory: 7.8 [3.1] vs 9.0 [2.9]; P = .008). Adults with dDNVs and/or pLOFs in genes with a high level of brain expression had greater Conners adult attention-deficit hyperactivity disorder rating scale scores (mean [SD], 55.5 [15.4] vs 46.6 [12.3]; P = .007). Conclusions and Relevance: The study findings suggest neurodevelopmental outcomes are not associated with dDNVs as a group but may be worse in individuals with dDNVs and/or pLOFs in some gene sets, such as chromatin-modifying genes. Future studies should confirm the importance of specific gene variants to brain function and structure.


Assuntos
Transtorno do Espectro Autista , Cardiopatias Congênitas , Humanos , Masculino , Adolescente , Criança , Feminino , Transtorno do Espectro Autista/complicações , Estudos Transversais , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/complicações , Função Executiva , Cromatina
17.
Can J Cardiol ; 39(2): 97-114, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183910

RESUMO

Congenital heart disease (CHD) is the most common birth anomaly, affecting almost 1% of infants. Neurodevelopmental delay is the most common extracardiac feature in people with CHD. Many factors may contribute to neurodevelopmental risk, including genetic factors, CHD physiology, and the prenatal/postnatal environment. Damaging variants are most highly enriched among individuals with extracardiac anomalies or neurodevelopmental delay in addition to CHD, indicating that genetic factors have an impact beyond cardiac tissues in people with CHD. Potential sources of genetic risk include large deletions or duplications that affect multiple genes, such as 22q11 deletion syndrome, single genes that alter both heart and brain development, such as CHD7, and common variants that affect neurodevelopmental resiliency, such as APOE. Increased use of genome-sequencing technologies in studies of neurodevelopmental outcomes in people with CHD will improve our ability to detect relevant genes and variants. Ultimately, such knowledge can lead to improved and more timely intervention of learning support for affected children.


Assuntos
Cardiopatias Congênitas , Lactente , Criança , Gravidez , Feminino , Humanos , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/diagnóstico , Coração , Fatores de Risco
18.
mBio ; 13(6): e0268822, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36374038

RESUMO

Hydrocephalus, the leading indication for childhood neurosurgery worldwide, is particularly prevalent in low- and middle-income countries. Hydrocephalus preceded by an infection, or postinfectious hydrocephalus, accounts for up to 60% of hydrocephalus in these areas. Since many children with hydrocephalus suffer poor long-term outcomes despite surgical intervention, prevention of hydrocephalus remains paramount. Our previous studies implicated a novel bacterial pathogen, Paenibacillus thiaminolyticus, as a causal agent of neonatal sepsis and postinfectious hydrocephalus in Uganda. Here, we report the isolation of three P. thiaminolyticus strains, Mbale, Mbale2, and Mbale3, from patients with postinfectious hydrocephalus. We constructed complete genome assemblies of the clinical isolates as well as the nonpathogenic P. thiaminolyticus reference strain and performed comparative genomic and proteomic analyses to identify potential virulence factors. All three isolates carry a unique beta-lactamase gene, and two of the three isolates exhibit resistance in culture to the beta-lactam antibiotics penicillin and ampicillin. In addition, a cluster of genes carried on a mobile genetic element that encodes a putative type IV pilus operon is present in all three clinical isolates but absent in the reference strain. CRISPR-mediated deletion of the gene cluster substantially reduced the virulence of the Mbale strain in mice. Comparative proteogenomic analysis identified various additional potential virulence factors likely acquired on mobile genetic elements in the virulent strains. These results provide insight into the emergence of virulence in P. thiaminolyticus and suggest avenues for the diagnosis and treatment of this novel bacterial pathogen. IMPORTANCE Postinfectious hydrocephalus, a devastating sequela of neonatal infection, is associated with increased childhood mortality and morbidity. A novel bacterial pathogen, Paenibacillus thiaminolyticus, is highly associated with postinfectious hydrocephalus in an African cohort. Whole-genome sequencing, RNA sequencing, and proteomics of clinical isolates and a reference strain in combination with CRISPR editing identified type IV pili as a critical virulence factor for P. thiaminolyticus infection. Acquisition of a type IV pilus-encoding mobile genetic element critically contributed to converting a nonpathogenic strain of P. thiaminolyticus into a pathogen capable of causing devastating diseases. Given the widespread presence of type IV pilus in pathogens, the presence of the type IV pilus operon could serve as a diagnostic and therapeutic target in P. thiaminolyticus and related bacteria.


Assuntos
Proteômica , Fatores de Virulência , Camundongos , Animais , Fatores de Virulência/genética , Uganda , Fímbrias Bacterianas/genética
20.
Front Psychiatry ; 13: 892259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35815018

RESUMO

Multimodal brain magnetic resonance imaging (MRI) can provide biomarkers of early influences on neurodevelopment such as nutrition, environmental and genetic factors. As the exposure to early influences can be separated from neurodevelopmental outcomes by many months or years, MRI markers can serve as an important intermediate outcome in multivariate analyses of neurodevelopmental determinants. Key to the success of such work are recent advances in data science as well as the growth of relevant data resources. Multimodal MRI assessment of neurodevelopment can be supplemented with other biomarkers of neurodevelopment such as electroencephalograms, magnetoencephalogram, and non-imaging biomarkers. This review focuses on how maternal nutrition impacts infant brain development, with three purposes: (1) to summarize the current knowledge about how nutrition in stages of pregnancy and breastfeeding impact infant brain development; (2) to discuss multimodal MRI and other measures of early neurodevelopment; and (3) to discuss potential opportunities for data science and artificial intelligence to advance precision nutrition. We hope this review can facilitate the collaborative march toward precision nutrition during pregnancy and the first year of life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA