RESUMO
OBJECTIVES: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease which is usually diagnosed late in advanced stages. Little is known about the subclinical development of IPF. We previously generated a mouse model with conditional Nedd4-2 deficiency (Nedd4-2-/-) that develops IPF-like lung disease. The aim of this study was to characterize the onset and progression of IPF-like lung disease in conditional Nedd4-2-/- mice by longitudinal micro-computed tomography (CT). METHODS: In vivo micro-CT was performed longitudinally in control and conditional Nedd4-2-/- mice at 1, 2, 3, 4 and 5 months after doxycycline induction. Further, terminal in vivo micro-CT followed by pulmonary function testing and post mortem micro-CT was performed in age-matched mice. Micro-CT images were evaluated for pulmonary fibrosis using an adapted fibrosis scoring system. Histological assessment of lung collagen content was conducted as well. RESULTS: Micro-CT is sensitive to detect onset and progression of pulmonary fibrosis in vivo and to quantify distinct radiological IPF-like features along disease development in conditional Nedd4-2-/- mice. Nonspecific interstitial alterations were detected from 3 months, whereas key features such as honeycombing-like lesions were detected from 4 months onwards. Pulmonary function correlated well with in vivo (r=-0.738) and post mortem (r=-0.633) micro-CT fibrosis scores and collagen content. CONCLUSION: Longitudinal micro-CT enables in vivo monitoring of onset and progression and detects radiologic key features of IPF-like lung disease in conditional Nedd4-2-/- mice. Our data support micro-CT as sensitive quantitative endpoint for preclinical evaluation of novel antifibrotic strategies.
RESUMO
Flow cytometry and fluorescence-activated cell sorting are widely used to study endothelial cells, for which the generation of viable single-cell suspensions is an essential first step. Two enzymatic approaches, collagenase A and dispase, are widely employed for endothelial cell isolation. In this study, the utility of both enzymatic approaches, alone and in combination, for endothelial cell isolation from juvenile and adult mouse lungs was assessed, considering the number, viability, and subtype composition of recovered endothelial cell pools. Collagenase A yielded an 8-12-fold superior recovery of viable endothelial cells from lung tissue from developing mouse pups, compared to dispase, although dispase proved superior in efficiency for epithelial cell recovery. Single-cell RNA-Seq revealed that the collagenase A approach yielded a diverse endothelial cell subtype composition of recovered endothelial cell pools, with broad representation of arterial, capillary, venous, and lymphatic lung endothelial cells; while the dispase approach yielded a recovered endothelial cell pool highly enriched for one subset of general capillary endothelial cells, but poor representation of other endothelial cells subtypes. These data indicate that tissue dissociation markedly influences the recovery of endothelial cells, and the endothelial subtype composition of recovered endothelial cell pools, as assessed by single-cell RNA-Seq.
Assuntos
Separação Celular , Células Endoteliais , Citometria de Fluxo , Pulmão , Animais , Camundongos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Pulmão/citologia , Separação Celular/métodos , Citometria de Fluxo/métodos , Colagenases/metabolismo , Análise de Célula Única/métodos , Camundongos Endogâmicos C57BL , EndopeptidasesRESUMO
BACKGROUND: Fibroblast-to-myofibroblast conversion is a major driver of tissue remodelling in organ fibrosis. Distinct lineages of fibroblasts support homeostatic tissue niche functions, yet their specific activation states and phenotypic trajectories during injury and repair have remained unclear. METHODS: We combined spatial transcriptomics, multiplexed immunostainings, longitudinal single-cell RNA-sequencing and genetic lineage tracing to study fibroblast fates during mouse lung regeneration. Our findings were validated in idiopathic pulmonary fibrosis patient tissues in situ as well as in cell differentiation and invasion assays using patient lung fibroblasts. Cell differentiation and invasion assays established a function of SFRP1 in regulating human lung fibroblast invasion in response to transforming growth factor (TGF)ß1. MEASUREMENTS AND MAIN RESULTS: We discovered a transitional fibroblast state characterised by high Sfrp1 expression, derived from both Tcf21-Cre lineage positive and negative cells. Sfrp1 + cells appeared early after injury in peribronchiolar, adventitial and alveolar locations and preceded the emergence of myofibroblasts. We identified lineage-specific paracrine signals and inferred converging transcriptional trajectories towards Sfrp1 + transitional fibroblasts and Cthrc1 + myofibroblasts. TGFß1 downregulated SFRP1 in noninvasive transitional cells and induced their switch to an invasive CTHRC1+ myofibroblast identity. Finally, using loss-of-function studies we showed that SFRP1 modulates TGFß1-induced fibroblast invasion and RHOA pathway activity. CONCLUSIONS: Our study reveals the convergence of spatially and transcriptionally distinct fibroblast lineages into transcriptionally uniform myofibroblasts and identifies SFRP1 as a modulator of TGFß1-driven fibroblast phenotypes in fibrogenesis. These findings are relevant in the context of therapeutic interventions that aim at limiting or reversing fibroblast foci formation.
Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Camundongos , Animais , Humanos , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Diferenciação Celular , Fator de Crescimento Transformador beta1/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismoRESUMO
Introduction: Acute respiratory distress syndrome (ARDS) is a common complication of influenza virus (IV) infection. During ARDS, alveolar protein concentrations often reach 40-90% of plasma levels, causing severe impairment of gas exchange and promoting deleterious alveolar remodeling. Protein clearance from the alveolar space is at least in part facilitated by the multi-ligand receptor megalin through clathrin-mediated endocytosis. Methods: To investigate whether IV infection impairs alveolar protein clearance, we examined albumin uptake and megalin expression in MLE-12 cells and alveolar epithelial cells (AEC) from murine precision-cut lung slices (PCLS) and in vivo, under IV infection conditions by flow cytometry and western blot. Transcriptional levels from AEC and broncho-alveolar lavage (BAL) cells were analyzed in an in-vivo mouse model by RNAseq. Results: IV significantly downregulated albumin uptake, independently of activation of the TGF-ß1/GSK3ß axis that has been previously implicated in the regulation of megalin function. Decreased plasma membrane abundance, total protein levels, and mRNA expression of megalin were associated with this phenotype. In IV-infected mice, we identified a significant upregulation of matrix metalloproteinase (MMP)-14 in BAL fluid cells. Furthermore, the inhibition of this protease partially recovered total megalin levels and albumin uptake. Discussion: Our results suggest that the previously described MMP-driven shedding mechanisms are potentially involved in downregulation of megalin cell surface abundance and clearance of excess alveolar protein. As lower alveolar edema protein concentrations are associated with better outcomes in respiratory failure, our findings highlight the therapeutic potential of a timely MMP inhibition in the treatment of IV-induced ARDS.
Assuntos
Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Camundongos , Células Epiteliais Alveolares , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Transporte Biológico , AlbuminasRESUMO
This review has been prepared by the Early Career Members and Chairs of the European Respiratory Society (ERS) Assembly 7: Paediatrics. We here summarise the highlights of the advances in paediatric respiratory research presented at the ERS International Congress 2022. The eight scientific groups of this Assembly cover a wide range of research areas, including respiratory physiology and sleep, asthma and allergy, cystic fibrosis (CF), respiratory infection and immunology, neonatology and intensive care, respiratory epidemiology, bronchology, and lung and airway developmental biology. Specifically, we report on abstracts presented at the congress on the effect of high altitude on sleep, sleep disorders, the hypoxic challenge test, and measurements of ventilation inhomogeneity. We discuss prevention of preschool wheeze and asthma, and new asthma medications. In children with CF, we describe how to monitor the effect of CF transmembrane conductance regulator modulator therapy. We present respiratory manifestations and chronic lung disease associated with common variable immunodeficiency. Furthermore, we discuss how to monitor respiratory function in neonatal and paediatric intensive care units. In respiratory epidemiology, we present the latest news from population-based and clinical cohort studies. We also focus on innovative and interventional procedures for the paediatric airway, such as cryotherapy. Finally, we stress the importance of better understanding the molecular mechanisms underlying normal and abnormal lung development.
RESUMO
Microscopy of mummified visceral tissue from a Medici family member in Italy identified a potential blood vessel containing erythrocytes. Giemsa staining, atomic force microscopy, and immunohistochemistry confirmed Plasmodium falciparum inside those erythrocytes. Our results indicate an ancient Mediterranean presence of P. falciparum, which remains responsible for most malaria deaths in Africa.
Assuntos
Malária Falciparum , Malária , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum , Microscopia/métodos , Itália/epidemiologiaRESUMO
A hallmark of acute respiratory distress syndrome (ARDS) is an accumulation of protein-rich alveolar edema that impairs gas exchange and leads to worse outcomes. Thus, understanding the mechanisms of alveolar albumin clearance is of high clinical relevance. Here, we investigated the mechanisms of the cellular albumin uptake in a three-dimensional culture of precision-cut lung slices (PCLS). We found that up to 60% of PCLS cells incorporated labeled albumin in a time- and concentration-dependent manner, whereas virtually no uptake of labeled dextran was observed. Of note, at a low temperature (4 °C), saturating albumin receptors with unlabeled albumin and an inhibition of clathrin-mediated endocytosis markedly decreased the endocytic uptake of the labeled protein, implicating a receptor-driven internalization process. Importantly, uptake rates of albumin were comparable in alveolar epithelial type I (ATI) and type II (ATII) cells, as assessed in PCLS from a SftpcCreERT2/+: tdTomatoflox/flox mouse strain (defined as EpCAM+CD31-CD45-tdTomatoSPC-T1α+ for ATI and EpCAM+CD31-CD45-tdTomatoSPC+T1α- for ATII cells). Once internalized, albumin was found in the early and recycling endosomes of the alveolar epithelium as well as in endothelial, mesenchymal, and hematopoietic cell populations, which might indicate transcytosis of the protein. In summary, we characterize albumin uptake in alveolar epithelial cells in the complex setting of PCLS. These findings may open new possibilities for pulmonary drug delivery that may improve the outcomes for patients with respiratory failure.
Assuntos
Células Epiteliais Alveolares , Clatrina , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Clatrina/metabolismo , Pulmão/metabolismo , Células Epiteliais/metabolismo , Albumina Sérica/metabolismo , Alvéolos Pulmonares/metabolismoRESUMO
Viral-induced lower respiratory tract infection (LRTI), mainly by respiratory syncytial virus (RSV), causes a major health burden among young children and has been associated with long-term respiratory dysfunction. Children with severe viral LRTI are frequently treated with oxygen therapy, hypothetically posing an additional risk factor for pulmonary sequelae. The main goal of this study was to determine the effect of concurrent hyperoxia exposure during the acute phase of viral LRTI on long-term pulmonary outcome. As an experimental model for severe RSV LRTI in infants, C57Bl/6J mice received an intranasal inoculation with the pneumonia virus of mice J3666 strain at post-natal day 7, and were subsequently exposed to hyperoxia (85% O2) or normoxia (21% O2) from post-natal day 10 to 17 during the acute phase of disease. Long-term outcomes, including lung function and structural development, were assessed 3 weeks post-inoculation at post-natal day 28. Compared to normoxic conditions, hyperoxia exposure in PVM-inoculated mice induced a transient growth arrest without subsequent catchup growth, as well as a long-term increase in airway resistance. This hyperoxia-induced pulmonary dysfunction was not associated with developmental changes to the airway or lung structure. These findings suggest that hyperoxia exposure during viral LRTI at young age may aggravate subsequent long-term pulmonary sequelae. Further research is needed to investigate the specific mechanisms underlying this alteration to pulmonary function.
Assuntos
Pneumonia , Nascimento Prematuro , Doença Pulmonar Obstrutiva Crônica , Feminino , Recém-Nascido , Humanos , Antibacterianos/uso terapêutico , Saúde Global , Farmacorresistência Bacteriana , Pneumonia/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , PulmãoRESUMO
The hyperoxia-induced pro-inflammatory response and tissue damage constitute pivotal steps leading to bronchopulmonary dysplasia (BPD) in the immature lung. The pro-inflammatory cytokines are considered attractive candidates for a directed intervention but the complex interplay between inflammatory and developmental signaling pathways requires a comprehensive evaluation before introduction into clinical trials as studied here for the death inducing ligand TRAIL. At birth and during prolonged exposure to oxygen and mechanical ventilation, levels of TRAIL were lower in tracheal aspirates of preterm infants <29 weeks of gestation which developed moderate/severe BPD. These findings were reproduced in the newborn mouse model of hyperoxic injury. The loss of TRAIL was associated with increased inflammation, apoptosis induction and more pronounced lung structural simplification after hyperoxia exposure for 7 days while activation of NFκB signaling during exposure to hyperoxia was abrogated. Pretreatment with recombinant TRAIL rescued the developmental distortions in precision cut lung slices of both wildtype and TRAIL-/- mice exposed to hyperoxia. Of importance, TRAIL preserved alveolar type II cells, mesenchymal progenitor cells and vascular endothelial cells. In the situation of TRAIL depletion, our data ascribe oxygen toxicity a more injurious impact on structural lung development. These data are not surprising taking into account the diverse functions of TRAIL and its stimulatory effects on NFκB signaling as central driver of survival and development. TRAIL exerts a protective role in the immature lung as observed for the death inducing ligand TNF-α before.
Assuntos
Displasia Broncopulmonar , Hiperóxia , Ligante Indutor de Apoptose Relacionado a TNF , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/metabolismo , Células Endoteliais/metabolismo , Humanos , Hiperóxia/complicações , Hiperóxia/genética , Hiperóxia/metabolismo , Recém-Nascido , Recém-Nascido Prematuro , Ligantes , Pulmão/metabolismo , Camundongos , NF-kappa B/metabolismo , Oxigênio/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/metabolismoRESUMO
Mammalian pulmonary arteries divide multiple times before reaching the vast capillary network of the alveoli. Morphological analyses of the arterial branches can be challenging because more proximal branches are likely biologically distinct from more peripheral parts. Thus, it is useful to group the arterial branches into groups of coherent biology. While the generational approach of dichotomous branching is straightforward, the grouping of arterial branches in the asymmetrically branching monopodial lung is less clear. Several established classification methods return highly dissimilar groupings when employed on the same organ. Here, we established a workflow allowing the quantification of grouping results for the monopodial lung and tested various methods to group the branches of the arterial tree into coherent groups. A mouse lung was imaged by synchrotron x-ray microcomputed tomography, and the arteries were digitally segmented. The arterial tree was divided into its individual segments, morphological properties were assessed from corresponding light microscopic scans, and different grouping methods were employed, such as (fractal) generation or (Strahler) order. The results were ranked by the morphological similarity within and dissimilarity between the resulting groups. Additionally, a method from the mathematical field of cluster analysis was employed for creating a reference classification. In conclusion, there were significant differences in method performance. The Strahler order was significantly superior to the generation system commonly used to classify human lung structure. Furthermore, a clustering approach indicated more precise ways to classify the monopodial lung vasculature exist.
Assuntos
Pulmão , Artéria Pulmonar , Camundongos , Animais , Humanos , Microtomografia por Raio-X , Alvéolos Pulmonares , Análise por Conglomerados , MamíferosRESUMO
In this review, Early Career Members of the European Respiratory Society (ERS) and the Chairs of the ERS Assembly 7: Paediatrics present the highlights in paediatric respiratory medicine from the ERS International Congress 2021. The eight scientific Groups of this Assembly cover respiratory physiology and sleep, asthma and allergy, cystic fibrosis (CF), respiratory infection and immunology, neonatology and intensive care, respiratory epidemiology, bronchology, and lung and airway development. We here describe new developments in lung function testing and sleep-disordered breathing diagnosis, early life exposures affecting pulmonary function in children and effect of COVID-19 on sleep and lung function. In paediatric asthma, we present the important role of the exposome in asthma development, and how biologics can provide better outcomes. We discuss new methods to assess distal airways in children with CF, as some details remain blind when using the lung clearance index. Moreover, we summarise the new ERS guidelines for bronchiectasis management in children and adolescents. We present interventions to reduce morbidity and monitor pulmonary function in newborns at risk of bronchopulmonary dysplasia and long-term chronic respiratory morbidity of this disease. In respiratory epidemiology, we characterise primary ciliary dyskinesia, identify early life determinants of respiratory health and describe the effect of COVID-19 preventive measures on respiratory symptoms. Also, we describe the epidemiology of interstitial lung diseases, possible consequences of tracheomalacia and a classification of diffuse alveolar haemorrhage in children. Finally, we highlight that the characterisation of genes and pathways involved in the development of a disease is essential to identify new biomarkers and therapeutic targets.
RESUMO
INTRODUCTION: Chronic lung disease, that is, bronchopulmonary dysplasia (BPD) is the most common complication in preterm infants and develops as a consequence of the misguided formation of the gas-exchange area undergoing prenatal and postnatal injury. Subsequent vascular disease and its progression into pulmonary arterial hypertension critically determines long-term outcome in the BPD infant but lacks identification of early, disease-defining changes. METHODS: We link impaired bone morphogenetic protein (BMP) signalling to the earliest onset of vascular pathology in the human preterm lung and delineate the specific effects of the most prevalent prenatal and postnatal clinical risk factors for lung injury mimicking clinically relevant conditions in a multilayered animal model using wild-type and transgenic neonatal mice. RESULTS: We demonstrate (1) the significant reduction in BMP receptor 2 (BMPR2) expression at the onset of vascular pathology in the lung of preterm infants, later mirrored by reduced plasma BMP protein levels in infants with developing BPD, (2) the rapid impairment (and persistent change) of BMPR2 signalling on postnatal exposure to hyperoxia and mechanical ventilation, aggravated by prenatal cigarette smoke in a preclinical mouse model and (3) a link to defective alveolar septation and matrix remodelling through platelet derived growth factor-receptor alpha deficiency. In a treatment approach, we partially reversed vascular pathology by BMPR2-targeted treatment with FK506 in vitro and in vivo. CONCLUSION: We identified impaired BMP signalling as a hallmark of early vascular disease in the injured neonatal lung while outlining its promising potential as a future biomarker or therapeutic target in this growing, high-risk patient population.