Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Int ; 156: 105326, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35307480

RESUMO

Abnormal and dysregulated neuroinflammation has been linked to many neurological disorders and neurodegenerative diseases. Understanding the mechanisms of neuroinflammation, their impact on neurodevelopment and how neuroinflammation might be modulated, are currently considered to be critical to improving neurological treatment. ReNcell CX (originating from the cortical region) and VM (originating from the ventral mesencephalon) are human immortalised neural stem cell lines, that have the potential to be used as experimental models for investigating neuroinflammation in vitro. However, the information on the inflammation response of these cells is limited. This is especially more so for undifferentiated ReNcells. In this report we demonstrate using ELISA that cultured, undifferentiated ReNcell CX and VM produce significant amounts of IL-6 in response to IL-1ß treatment, but not to LPS treatment. Additionally, conventional RT-PCR showed that ReNcell CX cells expressed TNFR1 and NF-κB, whereas ReNcell VM expressed only NF-κB. Our results encourage further investigation into the relationship between 1L-1ß and IL-6 in both ReNcell CX and VM. Moreover, TNF-α treatment might potentially affect neuroinflammation in ReNcell CX, while activation of the NF-κB pathway could also play a critical part in neuroinflammation.


Assuntos
Lipopolissacarídeos , Células-Tronco Neurais , Humanos , Interleucina-1beta , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Células-Tronco Neurais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
PLoS One ; 9(11): e111029, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25380249

RESUMO

Despite monolayer cultures being widely used for cancer drug development and testing, 2D cultures tend to be hypersensitive to chemotherapy and are relatively poor predictors of whether a drug will provide clinical benefit. Whilst generally more complicated, three dimensional (3D) culture systems often better recapitulate true cancer architecture and provide a more accurate drug response. As a step towards making 3D cancer cultures more accessible, we have developed a microwell platform and surface modification protocol to enable high throughput manufacture of 3D cancer aggregates. Herein we use this novel system to characterize prostate cancer cell microaggregates, including growth kinetics and drug sensitivity. Our results indicate that prostate cancer cells are viable in this system, however some non-cancerous prostate cell lines are not. This system allows us to consistently control for the presence or absence of an apoptotic core in the 3D cancer microaggregates. Similar to tumor tissues, the 3D microaggregates display poor polarity. Critically the response of 3D microaggregates to the chemotherapeutic drug, docetaxel, is more consistent with in vivo results than the equivalent 2D controls. Cumulatively, our results demonstrate that these prostate cancer microaggregates better recapitulate the morphology of prostate tumors compared to 2D and can be used for high-throughput drug testing.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cultura de Células/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Próstata/patologia , Apoptose/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dimetilpolisiloxanos/química , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA