Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(19): 31329-31341, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710655

RESUMO

Spectral beam combination of multiple single mode laser sources employing narrowband spectral filters which are arranged on the perimeter of regular polygons is demonstrated. With this simple geometric design, co-alignment and co-propagation of the individual laser beams can be reasonably achieved. Spectroscopic applicability is displayed by spatial filtering, mode-matching, and subsequent coupling of the combined beams into a 76 m astigmatic mirror multipass cell.

2.
Opt Express ; 29(5): 7794-7808, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726274

RESUMO

The interferometric cavity-assisted photothermal spectroscopy (ICAPS) method has been proven highly suitable for sensitive and compact gas detection by application of an optical cavity as transducer for photothermal spectroscopy. This work reports on the implementation of an overall fiber-coupled probe laser configuration detecting the reflectance of the individual interferometers in a balanced-detection ICAPS system. The layout greatly improves the overall sensor system robustness. Two identical 1 mm path length cavities were used for balanced detection, enabling sensor operation close to the fundamental limit of shot noise by efficiently cancelling excess noise. A quantum cascade laser served as a mid-infrared excitation source to induce refractive index changes in the sample, and a near-infrared fiber laser served as probe source to monitor the photo-induced refractive index variations. The metrological figures of merit for the sensor were investigated by SO2 detection. For the targeted absorption band centered at 1380.93 cm-1, a 3 ppbv minimum detection limit was achieved with a 1 s integration time, corresponding to a normalized noise equivalent absorption of 4.5 × 10-9 cm-1 W Hz-1/2.

3.
Photoacoustics ; 22: 100244, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33604239

RESUMO

We report on a comparison between two optical detection techniques, one based on a Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) detection module, where a quartz tuning fork is acoustically coupled with a pair of millimeter-sized resonator tubes; and the other one based on a Photothermal Spectroscopy (PTS) module where a Fabry-Perot interferometer acts as transducer to probe refractive index variations. When resonant optical absorption of modulated light occurs in a gas sample, QEPAS directly detects acoustic waves while PTS probes refractive index variations caused by local heating. Compact QEPAS and PTS detection modules were realized and integrated in a gas sensor system for detection of carbon monoxide (CO), targeting the fundamental band at 4.6 µm by using a distributed-feedback quantum cascade laser. Performance was compared and ultimate detection limits up to ∼ 6 part-per-billion (ppb) and ∼15 ppb were reached for QEPAS and the PTS module, respectively, using 100 s integration time and 40 mW of laser power.

4.
Sensors (Basel) ; 20(7)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225096

RESUMO

A quantum cascade laser-based sensor for ambient air monitoring is presented and five gases, affecting the air quality, can be quantified. The light sources are selected to measure CO, NO, NO2, N2O and SO2. The footprint of the measurement setup is designed to fit in two standard 19" rack (48 cm × 65 cm) with 4 height units (18 cm) whereas one is holding the optical components and the other one contains the electronics and data processing unit. The concentrations of the individual analytes are measured using 2f-Wavelength Modulation Spectroscopy (2f-WMS) and a commercially available multipass gas cell defines the optical path. In addition, CO can also be measured with a dispersion-based technique, which allows one to cover a wider concentration range than 2f-WMS. The performance of this prototype has been evaluated in the lab and detection limits in the range of 1ppbv have been achieved. Finally, the applicability of this prototype for ambient air monitoring is shown in a five-week measurement campaign in cooperation with the Municipal Department for Environmental Protection (MA 22) of Vienna, Austria.

5.
Opt Express ; 27(11): 15575-15584, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163752

RESUMO

This article presents the first implementation and the experimental characterization of a thermal infrared wavelength modulation laser heterodyne radiometer (WM-LHR) based on an external cavity quantum cascade laser. This novel WM-LHR system has demonstrated calibration-free operation, a superior signal to noise ratio and, more importantly, has opened the door for cost-efficient wide spectral range laser heterodyne radiometry in the near future.

6.
Opt Express ; 27(9): 12183-12195, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052763

RESUMO

An optical cavity can be utilized as an excellent transducer for highly sensitive gas detection with the application of photothermal spectroscopy, featuring the beneficial property of an ultra-low absorption volume within a rugged sensing element. We report the novel implementation of balanced detection in Fabry-Perot photothermal interferometry via two identical 1 mm-spaced cavities. That way, excess noise limiting the sensitivity of previous cavity-based photothermal sensors was effectively rejected close to the fundamental limit of shot noise. A quantum cascade laser served as mid-infrared excitation source to induce refractive index changes in the sample, and a near-infrared fiber laser served as probe source to monitor the photo-induced variations. The metrological qualities of the sensor were investigated by SO2 detection. For the targeted absorption band centered at 1380.93 cm-1, a 5 ppbv minimum detection limit was achieved with a 1 s integration time, corresponding to a normalized noise equivalent absorption of 7.5 × 10-9 cm-1 W Hz-1/2. Additionally, the sensor showed excellent long-term stability, enabling integration times of a few thousand seconds.

7.
Anal Bioanal Chem ; 409(3): 753-761, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27830317

RESUMO

On-line monitoring of key chemicals in an industrial production plant ensures economic operation, guarantees the desired product quality, and provides additional in-depth information on the involved chemical processes. For that purpose, rapid, rugged, and flexible measurement systems at reasonable cost are required. Here, we present the application of a flexible mid-IR filtometer for industrial gas sensing. The developed prototype consists of a modulated thermal infrared source, a temperature-controlled gas cell for absorption measurement and an integrated device consisting of a Fabry-Pérot interferometer and a pyroelectric mid-IR detector. The prototype was calibrated in the research laboratory at TU Wien for measuring methanol and methyl formate in the concentration ranges from 660 to 4390 and 747 to 4610 ppmV. Subsequently, the prototype was transferred and installed at the project partner Metadynea Austria GmbH and linked to their Process Control System via a dedicated micro-controller and used for on-line monitoring of the process off-gas. Up to five process streams were sequentially monitored in a fully automated manner. The obtained readings for methanol and methyl formate concentrations provided useful information on the efficiency and correct functioning of the process plant. Of special interest for industry is the now added capability to monitor the start-up phase and process irregularities with high time resolution (5 s).

8.
Anal Bioanal Chem ; 409(3): 729-739, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27640208

RESUMO

The implementation of a sensitive and selective as well as industrial fit gas sensor prototype based on wavelength modulation spectroscopy with second harmonic detection (2f-WMS) employing an 8-µm continuous-wave distributed feedback quantum cascade laser (CW-DFB-QCL) for monitoring hydrogen sulfide (H2S) at sub-ppm levels is reported. Regarding the applicability for analytical and industrial process purposes aimed at petrochemical environments, a synthetic methane (CH4) matrix of up to 1000 ppmv together with a varying H2S content was chosen as the model environment for the laboratory-based performance evaluation performed at TU Wien. A noise-equivalent absorption sensitivity (NEAS) for H2S targeting the absorption line at 1247.2 cm-1 was found to be 8.419 × 10-10 cm-1 Hz-1/2, and a limit of detection (LOD) of 150 ppbv H2S could be achieved. The sensor prototype was then deployed for on-site measurements at the petrochemical research hydrogenation platform of the industrial partner OMV AG. In order to meet the company's on-site safety regulations, the H2S sensor platform was installed in an industry rack and equipped with the required safety infrastructure for protected operation in hazardous and explosive environments. The work reports the suitability of the sensor prototype for simultaneous monitoring of H2S and CH4 content in the process streams of a research hydrodesulfurization (HDS) unit. Concentration readings were obtained every 15 s and revealed process dynamics not observed previously.

9.
Opt Express ; 24(25): 28958-28967, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958560

RESUMO

Trace gas detection was performed by the principle of photothermal interferometry using a Fabry-Perot interferometer combined with wavelength modulation and second harmonic detection. The sensor employed a compact, low-volume gas cell in an overall robust set-up without the use of any moveable part. A quantum cascade laser was used as powerful mid-infrared excitation source to induce refractive index changes in the sample, whereas a near-infrared laser diode served as probe source to monitor the photo-induced variations. The functional principle of the selective sensor was investigated by detection of sulfur dioxide. For the targeted absorption band centered at 1379.78 cm-1 a 1 σ minimum detection limit of about 1 parts per million by volume was achieved. The work demonstrates high potential for further sensor miniaturization down to a sample volume of only a few mm3. Limitations and possible improvements of the sensor regarding sensitivity are discussed.

10.
Opt Express ; 24(6): 6559-71, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136846

RESUMO

A compact gas sensor system based on quartz-enhanced photoacoustic spectroscopy (QEPAS) employing a continuous wave (CW) distributed feedback quantum cascade laser (DFB-QCL) operating at 4.59 µm was developed for detection of carbon disulfide (CS2) in air at trace concentration. The influence of water vapor on monitored QEPAS signal was investigated to enable compensation of this dependence by independent moisture sensing. A 1 σ limit of detection of 28 parts per billion by volume (ppbv) for a 1 s lock-in amplifier time constant was obtained for the CS2 line centered at 2178.69 cm-1 when the gas sample was moisturized with 2.3 vol% H2O. The work reports the suitability of the system for monitoring CS2 with high selectivity and sensitivity, as well as low sample gas volume requirements and fast sensor response for applications such as workplace air and process monitoring at industry.

11.
Opt Express ; 24(6): 6572-85, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136847

RESUMO

The present work reports on the first application of a ring-cavity-surface-emitting quantum-cascade laser (RCSE-QCL) for sensitive gas measurements. RCSE-QCLs are promising candidates for optical gas-sensing due to their single-mode, mode-hop-free and narrow-band emission characteristics along with their broad spectral coverage. The time resolved down-chirp of the RCSE-QCL in the 1227-1236 cm-1 (8.15-8.09 µm) spectral range was investigated using a step-scan FT-IR spectrometer (Bruker Vertex 80v) with 2 ns time and 0.1 cm-1 spectral resolution. The pulse repetition rate was set between 20 and 200 kHz and the laser device was cooled to 15-17°C. Employing 300 ns pulses a spectrum of ~1.5 cm-1 could be recorded. Under these laser operation conditions and a gas pressure of 1000 mbar a limit of detection (3σ) of 1.5 ppmv for hydrogen sulfide (H2S) in nitrogen was achieved using a 100 m Herriott cell and a thermoelectric cooled MCT detector for absorption measurements. Using 3 µs long pulses enabled to further extend the spectral bandwidth to 8.5 cm-1. Based on this increased spectral coverage and employing reduced pressure conditions (50 mbar) multiple peaks of the target analyte H2S as well as methane (CH4) could be examined within one single pulse.

12.
Sci Rep ; 6: 21795, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887891

RESUMO

We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a flat mirror and detected by the detector element of the sensor. The surface operation mode combined with the low divergence emission of the ring quantum cascade laser enables for long analyte interaction regions spatially separated from the sample surface. The device enables for sensing of gaseous analytes which requires a relatively long interaction region. Our design is suitable for 2D array integration with multiple emission and detection frequencies. Proof of principle measurements with isobutane (2-methylpropane) and propane as gaseous analytes were conducted. Detectable concentration values of 0-70% for propane and 0-90% for isobutane were reached at a laser operation wavelength of 6.5 µm utilizing a 10 cm gas cell in double pass configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA