Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuropsychol Rev ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695451

RESUMO

Over the last few decades, excessive and disordered screen use has become more prevalent, prompting investigations into its associated consequences. The extent to which disordered screen use behaviours impact neuropsychological functioning has been reportedly mixed and at times inconsistent. This review sought to synthesise the literature and estimate the magnitude of overall cognitive impairment across a wide range of disordered screen use behaviours. We also sought to determine the cognitive domains most impacted, and whether the observed impairments were moderated by the classification of screen-related behaviours (i.e., Internet or gaming) or the format of cognitive test administration (i.e., paper-and-pencil or computerised). A systematic search of databases (Embase, PsycINFO, MEDLINE) identified 43 cross-sectional articles that assessed neuropsychological performance in disordered screen use populations, 34 of which were included in the meta-analysis. A random-effects meta-analysis revealed significant small/medium (g = .38) cognitive deficits for individuals with disordered screen use behaviours relative to controls. The most affected cognitive domain with a significant medium effect size (g = .50) was attention and focus followed by a significant reduction in executive functioning (g = .31). The classification of disordered screen use behaviours into Internet or gaming categories or the format of cognitive testing did not moderate these deficits. Additionally, excluding disordered social media use in an exploratory analysis had little effect on the observed outcomes. This study highlights a number of methodological considerations that may have contributed to disparate findings and shows that disordered screen use can significantly impact cognitive performance. Recommendations for future research are also discussed. Data for this study can be found at https://osf.io/upeha/ .

2.
Vision Res ; 199: 108079, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749833

RESUMO

Can we trust our eyes? Until recently, we rarely had to question whether what we see is indeed what exists, but this is changing. Artificial neural networks can now generate realistic images that challenge our perception of what is real. This new reality can have significant implications for cybersecurity, counterfeiting, fake news, and border security. We investigated how the human brain encodes and interprets realistic artificially generated images using behaviour and brain imaging. We found that we could reliably decode AI generated faces using people's neural activity. However, while at a group level people performed near chance classifying real and realistic fakes, participants tended to interchange the labels, classifying real faces as realistic fakes and vice versa. Understanding this difference between brain and behavioural responses may be key in determining the 'real' in our new reality. Stimuli, code, and data for this study can be found at https://osf.io/n2z73/.


Assuntos
Mapeamento Encefálico , Encéfalo , Inteligência Artificial , Mapeamento Encefálico/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA