Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Elife ; 112022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35796426

RESUMO

E1 and E2 (E1E2), the fusion proteins of Hepatitis C Virus (HCV), are unlike that of any other virus yet described, and the detailed molecular mechanisms of HCV entry/fusion remain unknown. Hypervariable region-1 (HVR-1) of E2 is a putative intrinsically disordered protein tail. Here, we demonstrate that HVR-1 has an autoinhibitory function that suppresses the activity of E1E2 on free virions; this is dependent on its conformational entropy. Thus, HVR-1 is akin to a safety catch that prevents premature triggering of E1E2 activity. Crucially, this mechanism is turned off by host receptor interactions at the cell surface to allow entry. Mutations that reduce conformational entropy in HVR-1, or genetic deletion of HVR-1, turn off the safety catch to generate hyper-reactive HCV that exhibits enhanced virus entry but is thermally unstable and acutely sensitive to neutralising antibodies. Therefore, the HVR-1 safety catch controls the efficiency of virus entry and maintains resistance to neutralising antibodies. This discovery provides an explanation for the ability of HCV to persist in the face of continual immune assault and represents a novel regulatory mechanism that is likely to be found in other viral fusion machinery.


Assuntos
Hepacivirus , Hepatite C , Anticorpos Neutralizantes , Entropia , Hepacivirus/genética , Hepacivirus/metabolismo , Humanos , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
2.
Bioinformatics ; 37(10): 1461-1464, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33051680

RESUMO

MOTIVATION: We present flexible Modeling of Alternative PolyAdenylation (flexiMAP), a new beta-regression-based method implemented in R, for discovering differential alternative polyadenylation events in standard RNA-seq data. RESULTS: We show, using both simulated and real data, that flexiMAP exhibits a good balance between specificity and sensitivity and compares favourably to existing methods, especially at low fold changes. In addition, the tests on simulated data reveal some hitherto unrecognized caveats of existing methods. Importantly, flexiMAP allows modeling of multiple known covariates that often confound the results of RNA-seq data analysis. AVAILABILITY AND IMPLEMENTATION: The flexiMAP R package is available at: https://github.com/kszkop/flexiMAP. Scripts and data to reproduce the analysis in this paper are available at: https://doi.org/10.5281/zenodo.3689788. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Poliadenilação , Software , RNA-Seq , Análise de Sequência de RNA , Sequenciamento do Exoma
3.
PLoS Comput Biol ; 16(2): e1007710, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32109245

RESUMO

The glycoproteins of hepatitis C virus, E1E2, are unlike any other viral fusion machinery yet described, and are the current focus of immunogen design in HCV vaccine development; thus, making E1E2 both scientifically and medically important. We used pre-existing, but fragmentary, structures to model a complete ectodomain of the major glycoprotein E2 from three strains of HCV. We then performed molecular dynamic simulations to explore the conformational landscape of E2, revealing a number of important features. Despite high sequence divergence, and subtle differences in the models, E2 from different strains behave similarly, possessing a stable core flanked by highly flexible regions, some of which perform essential functions such as receptor binding. Comparison with sequence data suggest that this consistent behaviour is conferred by a network of conserved residues that act as hinge and anchor points throughout E2. The variable regions (HVR-1, HVR-2 and VR-3) exhibit particularly high flexibility, and bioinformatic analysis suggests that HVR-1 is a putative intrinsically disordered protein region. Dynamic cross-correlation analyses demonstrate intramolecular communication and suggest that specific regions, such as HVR-1, can exert influence throughout E2. To support our computational approach we performed small-angle X-ray scattering with purified E2 ectodomain; this data was consistent with our MD experiments, suggesting a compact globular core with peripheral flexible regions. This work captures the dynamic behaviour of E2 and has direct relevance to the interaction of HCV with cell-surface receptors and neutralising antibodies.


Assuntos
Hepatite C/virologia , Proteínas do Envelope Viral/química , Internalização do Vírus , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Simulação por Computador , Epitopos/imunologia , Glicosilação , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Espalhamento de Radiação , Raios X
4.
Nat Commun ; 10(1): 2641, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201325

RESUMO

Epsilon toxin (Etx), a potent pore forming toxin (PFT) produced by Clostridium perfringens, is responsible for the pathogenesis of enterotoxaemia of ruminants and has been suggested to play a role in multiple sclerosis in humans. Etx is a member of the aerolysin family of ß-PFTs (aß-PFTs). While the Etx soluble monomer structure was solved in 2004, Etx pore structure has remained elusive due to the difficulty of isolating the pore complex. Here we show the cryo-electron microscopy structure of Etx pore assembled on the membrane of susceptible cells. The pore structure explains important mutant phenotypes and suggests that the double ß-barrel, a common feature of the aß-PFTs, may be an important structural element in driving efficient pore formation. These insights provide the framework for the development of novel therapeutics to prevent human and animal infections, and are relevant for nano-biotechnology applications.


Assuntos
Toxinas Bacterianas/química , Clostridium perfringens/ultraestrutura , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/isolamento & purificação , Toxinas Bacterianas/metabolismo , Biotecnologia/métodos , Linhagem Celular , Infecções por Clostridium/microbiologia , Infecções por Clostridium/prevenção & controle , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Clostridium perfringens/patogenicidade , Microscopia Crioeletrônica , Cães , Enterotoxemia/microbiologia , Enterotoxemia/prevenção & controle , Modelos Moleculares , Mutagênese Sítio-Dirigida , Nanotecnologia/métodos , Conformação Proteica em Folha beta/genética , Multimerização Proteica/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
5.
Haematologica ; 104(3): 599-608, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30266735

RESUMO

Single missense mutations in the F8 gene encoding the coagulation protein factor VIII give rise predominantly to non-severe hemophilia A. Despite only a single amino acid sequence difference between the replacement, therapeutic factor VIII and the patient's endogenous factor VIII, therapeutic factor VIII may still be perceived as foreign by the recipient's immune system and trigger an immune response (inhibitor). Inhibitor formation is a life-long risk for patients with non-severe hemophilia A treated with therapeutic factor VIII, but remains difficult to predict. The aim of this study was to understand whether fortuitous, primary sequence cross-matches between therapeutic factor VIII and proteins in the human proteome are the reason why certain F8 mutations are not associated with inhibitor formation. We predicted which therapeutic factor VIII differences are potentially perceived as foreign by helper T cells - a necessary precursor to inhibitor development - and then scanned potentially immunogenic peptides against more than 100,000 proteins in the proteome. As there are hundreds of disease-causing F8 missense mutations and the human leukocyte antigen gene complex governing peptide presentation to helper T cells is highly polymorphic, these calculations pose a huge combinatorial challenge that we addressed computationally. We found that cross-matches between therapeutic factor VIII and the human proteome are commonplace and have a profound impact on the predicted risk of inhibitor development. Our results emphasize the importance of knowing both the F8 missense mutation and the human leukocyte antigen alleles of a patient with missense mutation hemophilia A if his underlying risk of inhibitor development is to be estimated.


Assuntos
Fator VIII/genética , Hemofilia A/genética , Hemofilia A/metabolismo , Isoanticorpos/imunologia , Mutação de Sentido Incorreto , Proteoma , Sequência de Aminoácidos , Fator VIII/administração & dosagem , Fator VIII/efeitos adversos , Fator VIII/imunologia , Antígenos HLA/química , Antígenos HLA/imunologia , Antígenos HLA/metabolismo , Hemofilia A/diagnóstico , Hemofilia A/tratamento farmacológico , Humanos , Isoanticorpos/sangue , Oligopeptídeos/química , Oligopeptídeos/imunologia , Oligopeptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteômica/métodos , Medição de Risco
6.
Front Mol Neurosci ; 10: 279, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955198

RESUMO

We present here the hypothesis that alternative poly-adenylation (APA) is dysregulated in the brains of individuals affected by Autism Spectrum Disorder (ASD), due to disruptions in the calcium signaling networks. APA, the process of selecting different poly-adenylation sites on the same gene, yielding transcripts with different-length 3' untranslated regions (UTRs), has been documented in different tissues, stages of development and pathologic conditions. Differential use of poly-adenylation sites has been shown to regulate the function, stability, localization and translation efficiency of target RNAs. However, the role of APA remains rather unexplored in neurodevelopmental conditions. In the human brain, where transcripts have the longest 3' UTRs and are thus likely to be under more complex post-transcriptional regulation, erratic APA could be particularly detrimental. In the context of ASD, a condition that affects individuals in markedly different ways and whose symptoms exhibit a spectrum of severity, APA dysregulation could be amplified or dampened depending on the individual and the extent of the effect on specific genes would likely vary with genetic and environmental factors. If this hypothesis is correct, dysregulated APA events might be responsible for certain aspects of the phenotypes associated with ASD. Evidence supporting our hypothesis is derived from standard RNA-seq transcriptomic data but we suggest that future experiments should focus on techniques that probe the actual poly-adenylation site (3' sequencing). To address issues arising from the use of post-mortem tissue and low numbers of heterogeneous samples affected by confounding factors (such as the age, gender and health of the individuals), carefully controlled in vitro systems will be required to model the effect of calcium signaling dysregulation in the ASD brain.

7.
Front Immunol ; 8: 143, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261207

RESUMO

In studying the binding of host antibodies to the surface antigens of pathogens, the structural and functional characterization of antibody-antigen complexes by X-ray crystallography and binding assay is important. However, the characterization requires experiments that are typically time consuming and expensive: thus, many antibody-antigen complexes are under-characterized. For vaccine development and disease surveillance, it is often vital to assess the impact of amino acid substitutions on antibody binding. For example, are there antibody substitutions capable of improving binding without a loss of breadth, or antigen substitutions that lead to antigenic escape? The questions cannot be answered reliably from sequence variation alone, exhaustive substitution assays are usually impractical, and alanine scans provide at best an incomplete identification of the critical residue-residue interactions. Here, we show that, given an initial structure of an antibody bound to an antigen, molecular dynamics simulations using the energy method molecular mechanics with Generalized Born surface area (MM/GBSA) can model the impact of single amino acid substitutions on antibody-antigen binding energy. We apply the technique to three broad-spectrum antibodies to influenza A hemagglutinin and examine both previously characterized and novel variant strains observed in the human population that may give rise to antigenic escape. We find that in some cases the impact of a substitution is local, while in others it causes a reorientation of the antibody with wide-ranging impact on residue-residue interactions: this explains, in part, why the change in chemical properties of a residue can be, on its own, a poor predictor of overall change in binding energy. Our estimates are in good agreement with experimental results-indeed, they approximate the degree of agreement between different experimental techniques. Simulations were performed on commodity computer hardware; hence, this approach has the potential to be widely adopted by those undertaking infectious disease research. Novel aspects of this research include the application of MM/GBSA to investigate binding between broadly binding antibodies and a viral glycoprotein; the development of an approach for visualizing substrate-ligand interactions; and the use of experimental assay data to rescale our predictions, allowing us to make inferences about absolute, as well as relative, changes in binding energy.

8.
Glycobiology ; 25(1): 124-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25227423

RESUMO

The extent of the role of N-linked glycans (N-glycans) in shielding influenza A hemagglutinin (HA) against host antibodies has proved controversial, with different authors making widely different assumptions. One common assumption is that N-glycans physically shield surface residues that are near to glycosylation sites, thereby preventing antibodies from binding to them. However, it is unclear, from existing experimental evidence, whether antibodies that bind close to N-glycans are a rare or commonplace feature of human herd immune responses to influenza AHA. The aim of this paper is to present a computational analysis of mutations in the vicinity of N-glycans that will facilitate a better understanding of their protective role. We identify, from an analysis of over 6000 influenza A H3N2 sequences, a set of residues adjacent to N-glycosylation sites that are highly likely to be involved in antigenic escape from host antibodies. Fifteen of these residues occur within 10 Å of an N-glycosylation site. Hence, we conclude that it is relatively common for antibodies to bind in close proximity to N-glycans on the surface ofHA, with any shielding effect largely attributable to the inability of host antibodies to bind across an N-glycan attachment site, rather than to the physical masking of neighboring residues.


Assuntos
Anticorpos Antivirais/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H3N2/química , Mutação , Polissacarídeos/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Configuração de Carboidratos , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica
9.
Br J Haematol ; 168(3): 413-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25244644

RESUMO

Over 500 missense F8 mutations have been reported to cause non-severe haemophilia A. Some F8 genotypes appear to confer a higher risk of inhibitor formation than others and individuals with the same F8 genotype may have differing risks of inhibitor formation. We present an in silico strategy demonstrating the heterogeneity of factor VIII (FVIII)-derived antigen presentation whilst identifying patterns of human leucocyte antigen (HLA) peptide binding that might predict future inhibitor risk. A well-validated computational tool, NetMHCII, enabled large-scale comparison of predicted antigen presentation between endogenous, mutated FVIII-derived peptides and wild-type, therapeutic FVIII-derived peptides spanning all F8 missense mutation positions reported to The Haemophilia A Mutation, Structure and Resource Site (HADB). We identify 40 F8 genotypes to be 'low risk' at a 50% inhibitory concentration (IC50 )-binding threshold of 300 nmol/l (P = 0·00005), defined as absence of novel peptide-major histocompatibility complex (MHC) surfaces for all 14 common HLA-DR alleles assessed. Analysing each of the possible 7280 F8 genotype/HLA-DR permutations individually at an IC50 threshold of 300 nmol/l, 65% are predicted to not generate a novel peptide-MHC surface that would be necessary to engage T cell help for subsequent anti-FVIII antibody generation. This study demonstrates the future importance of interpreting F8 genotype in the context of an individual's HLA profile to personalize inhibitor risk prediction.


Assuntos
Inibidores dos Fatores de Coagulação Sanguínea/sangue , Fator VIII/genética , Fator VIII/imunologia , Hemofilia A/genética , Sequência de Aminoácidos , Apresentação de Antígeno/genética , Autoanticorpos/sangue , Biologia Computacional/métodos , Simulação por Computador , Fator VIII/antagonistas & inibidores , Fator VIII/uso terapêutico , Genótipo , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Hemofilia A/imunologia , Humanos , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Valor Preditivo dos Testes , Medição de Risco/métodos
10.
J Mol Biol ; 426(18): 3134-3147, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25020226

RESUMO

CPE (Clostridium perfringens enterotoxin) is the major virulence determinant for C. perfringens type-A food poisoning, the second most common bacterial food-borne illness in the UK and USA. After binding to its receptors, which include particular human claudins, the toxin forms pores in the cell membrane. The mature pore apparently contains a hexamer of CPE, claudin and, possibly, occludin. The combination of high binding specificity with cytotoxicity has resulted in CPE being investigated, with some success, as a targeted cytotoxic agent for oncotherapy. In this paper, we present the X-ray crystallographic structure of CPE in complex with a peptide derived from extracellular loop 2 of a modified, CPE-binding Claudin-2, together with high-resolution native and pore-formation mutant structures. Our structure provides the first atomic-resolution data on any part of a claudin molecule and reveals that claudin's CPE-binding fingerprint (NPLVP) is in a tight turn conformation and binds, as expected, in CPE's C-terminal claudin-binding groove. The leucine and valine residues insert into the binding groove while the first residue, asparagine, tethers the peptide via an interaction with CPE's aspartate 225 and the two prolines are required to maintain the tight turn conformation. Understanding the structural basis of the contribution these residues make to binding will aid in engineering CPE to target tumor cells.


Assuntos
Claudina-2/química , Clostridium perfringens/química , Enterotoxinas/química , Modelos Moleculares , Substituição de Aminoácidos , Claudina-2/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/isolamento & purificação , Clostridium perfringens/metabolismo , Cristalografia por Raios X , Enterotoxinas/genética , Enterotoxinas/isolamento & purificação , Enterotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica
11.
Vaccine ; 32(23): 2682-7, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24709588

RESUMO

Epsilon toxin (Etx) is a ß-pore-forming toxin produced by Clostridium perfringens toxinotypes B and D and plays a key role in the pathogenesis of enterotoxemia, a severe, often fatal disease of ruminants that causes significant economic losses to the farming industry worldwide. This study aimed to determine the potential of a site-directed mutant of Etx (Y30A-Y196A) to be exploited as a recombinant vaccine against enterotoxemia. Replacement of Y30 and Y196 with alanine generated a stable variant of Etx with significantly reduced cell binding and cytotoxic activities in MDCK.2 cells relative to wild type toxin (>430-fold increase in CT50) and Y30A-Y196A was inactive in mice after intraperitoneal administration of trypsin activated toxin at 1000× the expected LD50 dose of trypsin activated wild type toxin. Moreover, polyclonal antibody raised in rabbits against Y30A-Y196A provided protection against wild type toxin in an in vitro neutralisation assay. These data suggest that Y30A-Y196A mutant could form the basis of an improved recombinant vaccine against enterotoxemia.


Assuntos
Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Enterotoxemia/prevenção & controle , Animais , Cães , Feminino , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Testes de Neutralização , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/imunologia
12.
Toxins (Basel) ; 6(3): 1049-61, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24625763

RESUMO

Necrotic enteritis toxin B (NetB) is a ß-pore-forming toxin produced by Clostridium perfringens and has been identified as a key virulence factor in the pathogenesis of avian necrotic enteritis, a disease causing significant economic damage to the poultry industry worldwide. In this study, site-directed mutagenesis was used to identify amino acids that play a role in NetB oligomerisation and pore-formation. NetB K41H showed significantly reduced toxicity towards LMH cells and human red blood cells relative to wild type toxin. NetB K41H was unable to oligomerise and form pores in liposomes. These findings suggest that NetB K41H could be developed as a genetic toxoid vaccine to protect against necrotic enteritis.


Assuntos
Toxinas Bacterianas/química , Enterotoxinas/química , Proteínas Citotóxicas Formadoras de Poros/química , Aminoácidos/química , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Galinhas , Enterotoxinas/genética , Enterotoxinas/metabolismo , Eritrócitos/metabolismo , Fluoresceínas/metabolismo , Hemólise , Humanos , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Estrutura Secundária de Proteína
13.
J Gen Virol ; 95(Pt 2): 317-324, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24187015

RESUMO

Recently, a number of broad-spectrum human antibodies binding to the stalk region of influenza A haemagglutinin (HA) have been isolated. As this region tends to develop substitutions at a slower rate than other regions of HA, a vaccine eliciting such antibodies could have a longer effective life. But this begs a question: is the stalk resistant to change even in the face of evolutionary pressure? In this paper, we analysed the known epitopes in the H3 stalk and, utilizing a collection of 3440 sequences, present a novel approach for detecting putative B-cell epitopes in regions such as this, in which mutations occur infrequently. We concluded that there have been periods of activity in the stalk that are consistent with the evolution of antigenic escape. This work casts light on the presence of stalk-binding antibodies in the population as a whole and, through the analysis of antigenically active regions in the stalk, may contribute to the identification of epitopes that are refractive to change and hence useful for vaccine development.


Assuntos
Variação Genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Anticorpos Antivirais/imunologia , Biologia Computacional , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Evolução Molecular , Humanos , Influenza Humana/prevenção & controle , Análise de Sequência de DNA
14.
Protein Sci ; 22(5): 650-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23504825

RESUMO

Clostridium perfringens epsilon toxin (Etx) is a pore-forming toxin responsible for a severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC), making work with recombinant toxin difficult. To reduce the hazard posed by work with recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx-H149A), previously reported to have reduced, but not abolished, toxicity. The three-dimensional structure of H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in domain I of Etx-H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx-H149A that correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of Etx-H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to ACHN cells was similar to that of Etx-H149A, suggesting that Etx can recognise different cell surface receptors. In support of this, the crystal structure of Etx-H149A identified a glycan (ß-octyl-glucoside) binding site in domain III of Etx-H149A, which may be a second receptor binding site. These findings have important implications for developing strategies designed to neutralise toxin activity.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Infecções por Clostridium/microbiologia , Clostridium perfringens/fisiologia , Interações Hospedeiro-Patógeno , Receptores de Superfície Celular/metabolismo , Animais , Toxinas Bacterianas/química , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular , Clostridium perfringens/química , Clostridium perfringens/genética , Cães , Células Madin Darby de Rim Canino , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Conformação Proteica
15.
J Biol Chem ; 288(5): 3512-22, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23239883

RESUMO

NetB is a pore-forming toxin produced by Clostridium perfringens and has been reported to play a major role in the pathogenesis of avian necrotic enteritis, a disease that has emerged due to the removal of antibiotics in animal feedstuffs. Here we present the crystal structure of the pore form of NetB solved to 3.9 Å. The heptameric assembly shares structural homology to the staphylococcal α-hemolysin. However, the rim domain, a region that is thought to interact with the target cell membrane, shows sequence and structural divergence leading to the alteration of a phosphocholine binding pocket found in the staphylococcal toxins. Consistent with the structure we show that NetB does not bind phosphocholine efficiently but instead interacts directly with cholesterol leading to enhanced oligomerization and pore formation. Finally we have identified conserved and non-conserved amino acid positions within the rim loops that significantly affect binding and toxicity of NetB. These findings present new insights into the mode of action of these pore-forming toxins, enabling the design of more effective control measures against necrotic enteritis and providing potential new tools to the field of bionanotechnology.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridium perfringens/metabolismo , Animais , Toxinas Bacterianas/toxicidade , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Galinhas , Colesterol/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Proteínas Mutantes/metabolismo , Mutação/genética , Fosfolipídeos/metabolismo , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Solubilidade , Eletricidade Estática
16.
BMC Bioinformatics ; 13: 39, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22417279

RESUMO

BACKGROUND: Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins' dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket's boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. RESULTS: We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i) analysis of a kinase superfamily highlights the conserved occurrence of surface pockets at the active and regulatory sites; ii) a simulated ensemble of unliganded Bcl2 structures reveals extensions of a known ligand-binding pocket not apparent in the apo crystal structure; iii) visualisations of interleukin-2 and its homologues highlight conserved pockets at the known receptor interfaces and regions whose conformation is known to change on inhibitor binding. CONCLUSIONS: Through post-processing of the output of a variety of pocket prediction software, Provar provides a flexible approach to the analysis and visualization of the persistence or variability of pockets in sets of related protein structures.


Assuntos
Proteínas/química , Software , Algoritmos , Animais , Desenho de Fármacos , Humanos , Interleucina-2/química , Ligantes , Modelos Moleculares , Conformação Proteica , Proteínas Quinases/química , Proteínas/metabolismo , Propriedades de Superfície
17.
J Mol Biol ; 413(1): 138-49, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21839091

RESUMO

Clostridium perfringens enterotoxin (CPE) is a major cause of food poisoning and antibiotic-associated diarrhea. Upon its release from C. perfringens spores, CPE binds to its receptor, claudin, at the tight junctions between the epithelial cells of the gut wall and subsequently forms pores in the cell membranes. A number of different complexes between CPE and claudin have been observed, and the process of pore formation has not been fully elucidated. We have determined the three-dimensional structure of the soluble form of CPE in two crystal forms by X-ray crystallography, to a resolution of 2.7 and 4.0 Å, respectively, and found that the N-terminal domain shows structural homology with the aerolysin-like ß-pore-forming family of proteins. We show that CPE forms a trimer in both crystal forms and that this trimer is likely to be biologically relevant but is not the active pore form. We use these data to discuss models of pore formation.


Assuntos
Enterotoxinas/química , Toxinas Bacterianas/química , Clostridium perfringens/química , Cristalografia por Raios X , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/química , Conformação Proteica , Multimerização Proteica
18.
J Virol ; 85(17): 8548-55, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21680505

RESUMO

In this paper we undertake an analysis of the antigenicity of influenza A virus hemagglutinin. We developed a novel computational approach to the identification of antigenically active regions and showed that the amino acid substitutions between successive predominant seasonal strains form clusters that are consistent, in terms of both their location and their size, with the properties of B-cell epitopes in general and with those epitopes that have been identified experimentally in influenza A virus hemagglutinin to date. Such an interpretation provides a biologically plausible framework for an understanding of the location of antigenically important substitutions that is more specific than the canonical "antigenic site" model and provides an effective basis for deriving models that predict antigenic escape in the H3N2 subtype. Our results support recent indications that antibodies binding to the "stalk" region of hemagglutinin are found in the human population and exert evolutionary pressure on the virus. Our computational approach provides a possible method for identifying antigenic escape through evolution in this region, which in some cases will not be identified by the hemagglutinin inhibition assay.


Assuntos
Antígenos Virais/imunologia , Epitopos de Linfócito B/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Substituição de Aminoácidos/genética , Antígenos Virais/genética , Biologia Computacional/métodos , Epitopos de Linfócito B/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Evasão da Resposta Imune , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Modelos Moleculares , Mutação de Sentido Incorreto
19.
Philos Trans A Math Phys Eng Sci ; 368(1920): 2799-815, 2010 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-20439274

RESUMO

The ultimate aim of the EU-funded ImmunoGrid project is to develop a natural-scale model of the human immune system-that is, one that reflects both the diversity and the relative proportions of the molecules and cells that comprise it-together with the grid infrastructure necessary to apply this model to specific applications in the field of immunology. These objectives present the ImmunoGrid Consortium with formidable challenges in terms of complexity of the immune system, our partial understanding about how the immune system works, the lack of reliable data and the scale of computational resources required. In this paper, we explain the key challenges and the approaches adopted to overcome them. We also consider wider implications for the present ambitious plans to develop natural-scale, integrated models of the human body that can make contributions to personalized health care, such as the European Virtual Physiological Human initiative. Finally, we ask a key question: How long will it take us to resolve these challenges and when can we expect to have fully functional models that will deliver health-care benefits in the form of personalized care solutions and improved disease prevention?


Assuntos
Imunidade Inata/imunologia , Internet , Modelos Imunológicos , Proteoma/imunologia , Software , Simulação por Computador , Humanos
20.
Bioinformatics ; 26(11): 1403-8, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20388627

RESUMO

MOTIVATION: Modelling antigenic shift in influenza A H3N2 can help to predict the efficiency of vaccines. The virus is known to exhibit sudden jumps in antigenic distance, and prediction of such novel strains from amino acid sequence differences remains a challenge. RESULTS: From analysis of 6624 amino acid sequences of wild-type H3, we propose updates to the frequently referenced list of 131 amino acids located at or near the five identified antibody binding regions in haemagglutinin (HA). We introduce a class of predictive models based on the analysis of amino acid changes in these binding regions, and extend the principle to changes in HA1 as a whole by dividing the molecule into regional bands. Our results show that a range of simple models based on banded changes give better predictive performance than models based on the established five canonical regions and can identify a higher proportion of vaccine escape candidates among novel strains than a current state-of-the-art model.


Assuntos
Variação Antigênica/genética , Biologia Computacional/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Sequência de Aminoácidos , Sítios de Ligação de Anticorpos , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA