Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Rep ; 13(1): 19052, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923786

RESUMO

The Streptococcus pyogenes cell envelope protease (SpyCEP) is vital to streptococcal pathogenesis and disease progression. Despite its strong association with invasive disease, little is known about enzymatic function beyond the ELR+ CXC chemokine substrate range. As a serine protease, SpyCEP has a catalytic triad consisting of aspartate (D151), histidine (H279), and serine (S617) residues which are all thought to be mandatory for full activity. We utilised a range of SpyCEP constructs to investigate the protein domains and catalytic residues necessary for enzyme function. We designed a high-throughput mass spectrometry assay to measure CXCL8 cleavage and applied this for the first time to study the enzyme kinetics of SpyCEP. Results revealed a remarkably low Michaelis-Menton constant (KM) of 82 nM and a turnover of 1.65 molecules per second. We found that an N-terminally-truncated SpyCEP C-terminal construct containing just the catalytic dyad of H279 and S617 was capable of cleaving CXCL8 with a similar KM of 55 nM, albeit with a reduced substrate turnover of 2.7 molecules per hour, representing a 2200-fold reduction in activity. We conclude that the SpyCEP C-terminus plays a key role in high affinity substrate recognition and binding, but that the N-terminus is required for full catalytic activity.


Assuntos
Peptídeo Hidrolases , Streptococcus pyogenes , Streptococcus pyogenes/metabolismo , Peptídeo Hidrolases/metabolismo , Domínios Proteicos
2.
Sci Transl Med ; 12(541)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350131

RESUMO

Myotonic dystrophy type 1 (DM1) is an RNA-based disease with no current treatment. It is caused by a transcribed CTG repeat expansion within the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Mutant repeat expansion transcripts remain in the nuclei of patients' cells, forming distinct microscopically detectable foci that contribute substantially to the pathophysiology of the condition. Here, we report small-molecule inhibitors that remove nuclear foci and have beneficial effects in the HSALR mouse model, reducing transgene expression, leading to improvements in myotonia, splicing, and centralized nuclei. Using chemoproteomics in combination with cell-based assays, we identify cyclin-dependent kinase 12 (CDK12) as a druggable target for this condition. CDK12 is a protein elevated in DM1 cell lines and patient muscle biopsies, and our results showed that its inhibition led to reduced expression of repeat expansion RNA. Some of the inhibitors identified in this study are currently the subject of clinical trials for other indications and provide valuable starting points for a drug development program in DM1.


Assuntos
Distrofia Miotônica , Animais , Quinases Ciclina-Dependentes , Modelos Animais de Doenças , Humanos , Camundongos , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , RNA , Splicing de RNA/genética , Expansão das Repetições de Trinucleotídeos/genética
3.
Comput Struct Biotechnol J ; 18: 650-660, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257048

RESUMO

Over 18 million disease cases and half a million deaths worldwide are estimated to be caused annually by Group A Streptococcus. A vaccine to prevent GAS disease is urgently needed. SpyCEP (Streptococcus pyogenes Cell-Envelope Proteinase) is a surface-exposed serine protease that inactivates chemokines, impairing neutrophil recruitment and bacterial clearance, and has shown promising immunogenicity in preclinical models. Although SpyCEP structure has been partially characterized, a more complete and higher resolution understanding of its antigenic features would be desirable prior to large scale manufacturing. To address these gaps and facilitate development of this globally important vaccine, we performed immunogenicity studies with a safety-engineered SpyCEP mutant, and comprehensively characterized its structure by combining X-ray crystallography, NMR spectroscopy and molecular dynamics simulations. We found that the catalytically-inactive SpyCEP antigen conferred protection similar to wild-type SpyCEP in a mouse infection model. Further, a new higher-resolution crystal structure of the inactive SpyCEP mutant provided new insights into this large chemokine protease comprising nine domains derived from two non-covalently linked fragments. NMR spectroscopy and molecular simulation analyses revealed conformational flexibility that is likely important for optimal substrate recognition and overall function. These combined immunogenicity and structural data demonstrate that the full-length SpyCEP inactive mutant is a strong candidate human vaccine antigen. These findings show how a multi-disciplinary study was used to overcome obstacles in the development of a GAS vaccine, an approach applicable to other future vaccine programs. Moreover, the information provided may also facilitate the structure-based discovery of small-molecule therapeutics targeting SpyCEP protease inhibition.

4.
Sci Rep ; 7(1): 10806, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883402

RESUMO

The peptide hormone human relaxin-2 (H2-RLX) has emerged as a potential therapy for cardiovascular and fibrotic diseases, but its short in vivo half-life is an obstacle to long-term administration. The discovery of ML290 demonstrated that it is possible to identify small molecule agonists of the cognate G-protein coupled receptor for H2-RLX (relaxin family peptide receptor-1 (RXFP1)). In our efforts to generate a new medicine for liver fibrosis, we sought to identify improved small molecule functional mimetics of H2-RLX with selective, full agonist or positive allosteric modulator activity against RXFP1. First, we confirmed expression of RXFP1 in human diseased liver. We developed a robust cellular cAMP reporter assay of RXFP1 signaling in HEK293 cells transiently expressing RXFP1. A high-throughput screen did not identify further specific agonists or positive allosteric modulators of RXFP1, affirming the low druggability of this receptor. As an alternative approach, we generated novel ML290 analogues and tested their activity in the HEK293-RXFP1 cAMP assay and the human hepatic cell line LX-2. Differences in activity of compounds on cAMP activation compared with changes in expression of fibrotic markers indicate the need to better understand cell- and tissue-specific signaling mechanisms and their disease-relevant phenotypes in order to enable drug discovery.


Assuntos
Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ativadores de Enzimas/isolamento & purificação , Cirrose Hepática/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Biópsia , Células Cultivadas , Ativadores de Enzimas/síntese química , Ativadores de Enzimas/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Cirrose Hepática/patologia
5.
Biochim Biophys Acta ; 1828(11): 2583-91, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23871992

RESUMO

G-protein coupled receptors (GPCRs) are integral membrane cell surface receptors with key roles in mediating the cellular responses to a wide range of biologically relevant molecules including hormones, neurotransmitters and importantly the majority of currently available drugs. The first high-resolution, X-ray crystallographic structure of a GPCR, that of rhodopsin, was obtained in 2000. It took a further seven years for the next structure, that of the ß2 adrenergic receptor. Remarkably, at the time of writing, there have been an astonishing 18 further independent high-resolution GPCR structures published in the last five years (overall total of 68 structures in different conformations or bound to different ligands). Of particular note is the recent structure of the ß2 adrenergic receptor in complex with its cognate heterotrimeric G-protein revealing for the first time molecular details of the interaction between a GPCR and the complete G-protein. Together these structures have provided unprecedented detail into the mechanism of action of these incredibly important proteins. This review describes several key methodological advances that have made such extraordinarily fast progress possible.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Cristalização , Cristalografia por Raios X , Fragmentos de Imunoglobulinas/metabolismo , Modelos Moleculares , Mutagênese , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-23722853

RESUMO

Mycobacterium tuberculosis DNA gyrase, a nanomachine involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and hence is the sole target of fluoroquinolones in the treatment of tuberculosis. The ATPase domain provides the energy required for catalysis by ATP hydrolysis. Two constructs corresponding to this 43 kDa domain, Mtb-GyrB47(C1) and Mtb-GyrB47(C2), have been overproduced, purified and crystallized. Diffraction data were collected from three crystal forms. The crystals belonged to space groups P1 and P21 and diffracted to resolutions of 2.9 and 3.3 Å, respectively.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , DNA Girase/química , Mycobacterium tuberculosis/enzimologia , Adenosina Trifosfatases/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Cristalização , Cristalografia por Raios X , DNA Girase/isolamento & purificação
7.
Proc Natl Acad Sci U S A ; 110(9): 3333-8, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23341587

RESUMO

Circadian rhythms govern a wide variety of physiological and metabolic functions in many organisms, from prokaryotes to humans. We previously reported that silent information regulator 1 (SIRT1), a NAD(+)-dependent deacetylase, contributes to circadian control. In addition, SIRT1 activity is regulated in a cyclic manner in virtue of the circadian oscillation of the coenzyme NAD(+). Here we used specific SIRT1 activator compounds both in vitro and in vivo. We tested a variety of compounds to show that the activation of SIRT1 alters CLOCK:BMAL1-driven transcription in different systems. Activation of SIRT1 induces repression of circadian gene expression and decreases H3 K9/K14 acetylation at corresponding promoters in a time-specific manner. Specific activation of SIRT1 was demonstrated in vivo using liver-specific SIRT1-deficient mice, where the effect of SIRT1 activator compounds was shown to be dependent on SIRT1. Our findings demonstrate that SIRT1 can fine-tune circadian rhythm and pave the way to the development of pharmacological strategies to address a broad range of therapeutic indications.


Assuntos
Ritmo Circadiano/genética , Ativadores de Enzimas/farmacologia , Sirtuína 1/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Linhagem Celular , Cromatina/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , NAD/metabolismo , Transcrição Gênica/efeitos dos fármacos
9.
Protein Expr Purif ; 47(2): 591-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16481201

RESUMO

Human BCRP and OATP1B1 have recently been identified as important transporters in the absorption, distribution, and elimination of clinically significant drugs. In this report, we illustrate the use of modified baculoviruses, termed BacMam viruses for the expression of functional BCRP and OATP1B1 in mammalian cells. We show a variety of host cells efficiently transduced to express BCRP including HEK 293, LLC-PK, and U-2 OS, where protein levels on the cell-surface were modulated by titrating different amounts of viral inoculum. In addition, using the BODIPY-prazosin efflux assay and the BacMam reagent we illustrate inhibition of BCRP activity with GF120918 or Fumitremorgin C. Furthermore, we present data demonstrating simultaneous expression of BCRP and OATP1B1 in BacMam transduced mammalian cells by simply adding viral inoculum of each transporter. Thus these results indicate that BacMam mediated gene delivery provides a novel and efficient research tool for the investigation of single or multiple transporters in vitro.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Baculoviridae , Membrana Celular/metabolismo , Proteínas de Neoplasias/biossíntese , Transportadores de Ânions Orgânicos/biossíntese , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Acridinas/farmacologia , Animais , Células COS , Linhagem Celular Tumoral , Membrana Celular/genética , Chlorocebus aethiops , Humanos , Indóis/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transportadores de Ânions Orgânicos/genética , Spodoptera/citologia , Suínos , Tetra-Hidroisoquinolinas/farmacologia , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA