Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Direct ; 8(7): e617, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973810

RESUMO

Isoprene, a volatile hydrocarbon, is typically emitted from the leaves of many plant species. Given its well-known function in plant growth and defense aboveground, we examined its effects on root physiology. We used isoprene-emitting (IE) lines and a non-emitting (NE) line of Arabidopsis and investigated their performance by analyzing root phenotype, hormone levels, transcriptome, and metabolite profiles under both normal and salt stress conditions. We show that IE lines emitted tiny amounts of isoprene from roots and showed an increased root/shoot ratio compared with NE line. Isoprene emission exerted a noteworthy influence on hormone profiles related to plant growth and stress response, promoting root development and salt-stress resistance. Methyl erythritol 4-phosphate pathway metabolites, precursors of isoprene and hormones, were higher in the roots of IE lines than in the NE line. Transcriptome data indicated that the presence of isoprene increased the expression of key genes involved in hormone metabolism/signaling. Our findings reveal that constitutive root isoprene emission sustains root growth under saline conditions by regulating and/or priming hormone biosynthesis and signaling mechanisms and expression of key genes relevant to salt stress defense.

2.
Stress Biol ; 4(1): 34, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073476

RESUMO

As sessile organisms, plants constantly face a variety of abiotic stresses, such as drought, salinity, and metal/metalloid toxicity, all of which possess significant threats to plant growth and yield potential. Improving plant resilience to such abiotic stresses bears paramount importance in practicing sustainable agriculture worldwide. Acetic acid/acetate has been recognized as an important metabolite with multifaceted roles in regulating plant adaptation to diverse abiotic stresses. Recent studies have elucidated that acetic acid can potentiate plants' inherent mechanisms to withstand the adverse effects of abiotic stresses through the regulation of lipid metabolism, hormone signaling, epigenetic changes, and physiological defense mechanisms. Numerous studies also underpin the potential use of acetic acid in boosting crop production under unfavorable environmental conditions. This review provides a comprehensive update on the understanding of how acetic acid regulates plant photosynthesis, acts as an antitranspirant, detoxifies reactive oxygen species to alleviate oxidative stress, interacts with phytohormones to regulate physiological processes, and improves soil fertility and microbial diversity, with a specific focus on drought, salinity, and metal toxicity. We also highlight the eco-friendly and economic potential of acetic acid that may attract farmers from developing countries to harness the benefits of acetic acid application for boosting abiotic stress resistance in crops. Given that acetic acid is a widely accessible, inexpensive, and eco-friendly compound, the revelation of acetic acid-mediated regulatory pathways and its crosstalk with other signaling molecules will have significant importance in developing a sustainable strategy for mitigating abiotic stresses in crops.

3.
Plant Physiol Biochem ; 207: 108328, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183902

RESUMO

The implementation of salt stress mitigation strategies aided by microorganisms has the potential to improve crop growth and yield. The endophytic fungus Metarhizium anisopliae shows the ability to enhance plant growth and mitigate diverse forms of abiotic stress. We examined the functions of M. anisopliae isolate MetA1 (MA) in promoting salinity resistance by investigating several morphological, physiological, biochemical, and yield features in rice plants. In vitro evaluation demonstrated that rice seeds primed with MA enhanced the growth features of rice plants exposed to 4, 8, and 12 dS/m of salinity for 15 days in an agar medium. A pot experiment was carried out to evaluate the growth and development of MA-primed rice seeds after exposing them to similar levels of salinity. Results indicated MA priming in rice improved shoot and root biomass, photosynthetic pigment contents, leaf succulence, and leaf relative water content. It also significantly decreased Na+/K+ ratios in both shoots and roots and the levels of electrolyte leakage, malondialdehyde, and hydrogen peroxide, while significantly increasing proline content in the leaves. The antioxidant enzymes catalase, glutathione S-transferase, ascorbate peroxidase, and peroxidase, as well as the non-enzymatic antioxidants phenol and flavonoids, were significantly enhanced in MA-colonized plants when compared with MA-unprimed plants under salt stress. The MA-mediated restriction of salt accumulation and improvement in physiological and biochemical mechanisms ultimately contributed to the yield improvement in salt-exposed rice plants. Our findings suggest the potential use of the MA seed priming strategy to improve salt tolerance in rice and perhaps in other crop plants.


Assuntos
Metarhizium , Oryza , Endófitos , Oryza/microbiologia , Tolerância ao Sal , Antioxidantes
4.
Stress Biol ; 4(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38169020

RESUMO

In the context of climate change, the need to ensure food security and safety has taken center stage. Chemical fertilizers and pesticides are traditionally used to achieve higher plant productivity and improved plant protection from biotic stresses. However, the widespread use of fertilizers and pesticides has led to significant risks to human health and the environment, which are further compounded by the emissions of greenhouse gases during fertilizer and pesticide production and application, contributing to global warming and climate change. The naturally occurring sulfated linear polysaccharides obtained from edible red seaweeds (Rhodophyta), carrageenans, could offer climate-friendly substitutes for these inputs due to their bi-functional activities. Carrageenans and their derivatives, known as oligo-carrageenans, facilitate plant growth through a multitude of metabolic courses, including chlorophyll metabolism, carbon fixation, photosynthesis, protein synthesis, secondary metabolite generation, and detoxification of reactive oxygen species. In parallel, these compounds suppress pathogens by their direct antimicrobial activities and/or improve plant resilience against pathogens by modulating biochemical changes via salicylate (SA) and/or jasmonate (JA) and ethylene (ET) signaling pathways, resulting in increased production of secondary metabolites, defense-related proteins, and antioxidants. The present review summarizes the usage of carrageenans for increasing plant development and defense responses to pathogenic challenges under climate change. In addition, the current state of knowledge regarding molecular mechanisms and metabolic alterations in plants during carrageenan-stimulated plant growth and plant disease defense responses has been discussed. This evaluation will highlight the potential use of these new biostimulants in increasing agricultural productivity under climate change.

5.
Plant Physiol Biochem ; 206: 108230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100888

RESUMO

Waterlogging (WL) is a major hindrance to the growth and development of leguminous crops, including mung bean. Here, we explored the effect of salicylic acid (SA) pretreatment on growth and yield output of two elite mung bean genotypes (BU Mung bean-4 and BU Mung bean-6) subjected to WL stress. SA pretreatment significantly improved shoot dry weight, individual leaf area, and photosynthetic pigment contents in both genotypes, while those improvements were higher in BU Mung bean-6 when compared with BU Mung bean-4. We also found that SA pretreatment significantly reduced the reactive oxygen species-induced oxidative burden in both BU Mung bean-6 and BU Mung bean-4 by enhancing peroxidase, glutathione S-transferase, catalase, and ascorbate peroxidase activities, as well as total flavonoid contents. SA pretreatment further improved the accumulation of proline and free amino acids in both genotypes, indicating that SA employed these osmoprotectants to enhance osmotic balance. These results were particularly corroborated with the elevated levels of leaf water status and leaf succulence in BU Mung bean-6. SA-mediated improvement in physiological and biochemical mechanisms led to a greater yield-associated feature in BU Mung bean-6 under WL conditions. Collectively, these findings shed light on the positive roles of SA in alleviating WL stress, contributing to yield improvement in mung bean crop.


Assuntos
Fabaceae , Vigna , Antioxidantes/metabolismo , Vigna/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Fabaceae/metabolismo , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA