RESUMO
Tuberculous meningitis (TB meningitis) is the most devastating form of tuberculosis (TB) and there is a critical need to optimize treatment. Linezolid is approved for multidrug resistant TB and has shown encouraging results in retrospective TB meningitis studies, with several clinical trials underway assessing its additive effects on high-dose (35 mg/kg/day) or standard-dose (10 mg/kg/day) rifampin-containing regimens. However, the efficacy of adjunctive linezolid to rifampin-containing first-line TB meningitis regimens and the tissue pharmacokinetics (PK) in the central nervous system (CNS) are not known. We therefore conducted cross-species studies in two mammalian (rabbits and mice) models of TB meningitis to test the efficacy of linezolid when added to the first-line TB regimen and measure detailed tissue PK (multicompartmental positron emission tomography [PET] imaging and mass spectrometry). Addition of linezolid did not improve the bactericidal activity of the high-dose rifampin-containing regimen in either animal model. Moreover, the addition of linezolid to standard-dose rifampin in mice also did not improve its efficacy. Linezolid penetration (tissue/plasma) into the CNS was compartmentalized with lower than previously reported brain and cerebrospinal fluid (CSF) penetration, which decreased further two weeks after initiation of treatment. These results provide important data regarding the addition of linezolid for the treatment of TB meningitis.
Assuntos
Tuberculose Meníngea , Tuberculose Resistente a Múltiplos Medicamentos , Coelhos , Animais , Camundongos , Rifampina/uso terapêutico , Rifampina/farmacocinética , Linezolida/uso terapêutico , Tuberculose Meníngea/tratamento farmacológico , Antituberculosos/uso terapêutico , Antituberculosos/farmacocinética , Estudos Retrospectivos , Modelos Animais , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , MamíferosRESUMO
Pretomanid is a nitroimidazole antimicrobial active against drug-resistant Mycobacterium tuberculosis and approved in combination with bedaquiline and linezolid (BPaL) to treat multidrug-resistant (MDR) pulmonary tuberculosis (TB). However, the penetration of these antibiotics into the central nervous system (CNS), and the efficacy of the BPaL regimen for TB meningitis, are not well established. Importantly, there is a lack of efficacious treatments for TB meningitis due to MDR strains, resulting in high mortality. We have developed new methods to synthesize 18F-pretomanid (chemically identical to the antibiotic) and performed cross-species positron emission tomography (PET) imaging to noninvasively measure pretomanid concentration-time profiles. Dynamic PET in mouse and rabbit models of TB meningitis demonstrates excellent CNS penetration of pretomanid but cerebrospinal fluid (CSF) levels does not correlate with those in the brain parenchyma. The bactericidal activity of the BPaL regimen in the mouse model of TB meningitis is substantially inferior to the standard TB regimen, likely due to restricted penetration of bedaquiline and linezolid into the brain parenchyma. Finally, first-in-human dynamic 18F-pretomanid PET in six healthy volunteers demonstrates excellent CNS penetration of pretomanid, with significantly higher levels in the brain parenchyma than in CSF. These data have important implications for developing new antibiotic treatments for TB meningitis.
Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Tuberculose Meníngea , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Animais , Camundongos , Coelhos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Linezolida , Diarilquinolinas/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Modelos Animais de DoençasRESUMO
Vascular endothelial growth factors (VEGFs) are the key regulators of blood and lymphatic vessels' formation and function. Each of the proteins from the homologous family VEGFA, VEGFB, VEGFC and VEGFD employs a core cysteine-knot structural domain for the specific interaction with one or more of the cognate tyrosine kinase receptors. Additional diversity is exhibited by the involvement of neuropilins-transmembrane co-receptors, whose b1 domain contains the binding site for the C-terminal sequence of VEGFs. Although all relevant isoforms of VEGFs that interact with neuropilins contain the required C-terminal Arg residue, there is selectivity of neuropilins and VEGF receptors for the VEGF proteins, which is reflected in the physiological roles that they mediate. To decipher the contribution made by the C-terminal sequences of the individual VEGF proteins to that functional differentiation, we determined structures of molecular complexes of neuropilins and VEGF-derived peptides and examined binding interactions for all neuropilin-VEGF pairs experimentally and computationally. While X-ray crystal structures and ligand-binding experiments highlighted similarities between the ligands, the molecular dynamics simulations uncovered conformational preferences of VEGF-derived peptides beyond the C-terminal arginine that contribute to the ligand selectivity of neuropilins. The implications for the design of the selective antagonists of neuropilins' functions are discussed.
Assuntos
Neuropilinas , Fator A de Crescimento do Endotélio Vascular , Ligantes , Neuropilinas/química , Neuropilinas/genética , Neuropilinas/metabolismo , Peptídeos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio VascularRESUMO
Tuberculous meningitis (TB meningitis) is the most severe form of tuberculosis (TB), requiring 12 months of multidrug treatment for cure, and is associated with high morbidity and mortality. High-dose rifampin (35 mg/kg/d) is safe and improves the bactericidal activity of the standard-dose (10 mg/kg/d) rifampin-containing TB regimen in pulmonary TB. However, there are conflicting clinical data regarding its benefit for TB meningitis, where outcomes may also be associated with intracerebral inflammation. We conducted cross-species studies in mice and rabbits, demonstrating that an intensified high-dose rifampin-containing regimen has significantly improved bactericidal activity for TB meningitis over the first-line, standard-dose rifampin regimen, without an increase in intracerebral inflammation. Positron emission tomography in live animals demonstrated spatially compartmentalized, lesion-specific pathology, with postmortem analyses showing discordant brain tissue and cerebrospinal fluid rifampin levels and inflammatory markers. Longitudinal multimodal imaging in the same cohort of animals during TB treatment as well as imaging studies in two cohorts of TB patients demonstrated that spatiotemporal changes in localized blood-brain barrier disruption in TB meningitis are an important driver of rifampin brain exposure. These data provide unique insights into the mechanisms underlying high-dose rifampin in TB meningitis with important implications for developing new antibiotic treatments for infections.
Assuntos
Rifampina , Tuberculose Meníngea , Animais , Antituberculosos , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Camundongos , Modelos Animais , Coelhos , Rifampina/uso terapêutico , Tuberculose Meníngea/complicações , Tuberculose Meníngea/tratamento farmacológicoRESUMO
PURPOSE: To determine the sensitivity of the 18F-radiolabelled dihydroethidine analogue ([18F]DHE) to ROS in a validated ex vivo model of tissue oxidative stress. PROCEDURES: The sensitivity of [18F]DHE to various ROS-generating systems was first established in vitro. Then, isolated rat hearts were perfused under constant flow, with contractile function monitored by intraventricular balloon. Cardiac uptake of infused [18F]DHE (50-150 kBq.min-1) was monitored by γ-detection, while ROS generation was invoked by menadione infusion (0, 10, or 50 µm), validated by parallel measures of cardiac oxidative stress. RESULTS: [18F]DHE was most sensitive to oxidation by superoxide and hydroxyl radicals. Normalised [18F]DHE uptake was significantly greater in menadione-treated hearts (1.44 ± 0.27) versus control (0.81 ± 0.07) (p < 0.05, n = 4/group), associated with concomitant cardiac contractile dysfunction, glutathione depletion, and PKG1α dimerisation. CONCLUSION: [18F]DHE reports on ROS in a validated model of oxidative stress where perfusion (and tracer delivery) is unlikely to impact its pharmacokinetics.
Assuntos
Dicarbetoxi-Di-Hidrocolidina , Vitamina K 3 , Animais , Dicarbetoxi-Di-Hidrocolidina/análogos & derivados , Tomografia por Emissão de Pósitrons , Ratos , Espécies Reativas de OxigênioRESUMO
Oxidative stress underlies the pathology of many human diseases, including the doxorubicin-induced off-target cardiotoxicity in cancer chemotherapies. Since current diagnostic procedures are only capable of monitoring cardiac function, a noninvasive means of detecting biochemical changes in redox status prior to irreversible functional changes is highly desirable for both early diagnosis and prognosis. We designed a novel 18F-labeled molecular probe, 18F-FPBT, for the direct detection of superoxide in vivo using positron emission tomography (PET). 18F-FPBT was radiosynthesized in one step by nucleophilic radiofluorination. In vitro, 18F-FPBT showed rapid and selective oxidation by superoxide (around 60% in 5 min) compared to other physiological ROS. In healthy mice and rats, 18F-FBPT is distributed to all major organs in the first few minutes post injection and is rapidly cleared via both renal and hepatobiliary routes with minimal background retention in the heart. In a rat model of doxorubicin-induced cardiotoxicity, 18F-FBPT showed significantly higher (P < 0.05) uptake in the hearts of treated animals compared to healthy controls. These results warrant further optimization of 18F-FBPT for clinical translation.
Assuntos
Cardiotoxicidade/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Animais , Cardiotoxicidade/etiologia , Modelos Animais de Doenças , Doxorrubicina/toxicidade , Ecocardiografia , Radioisótopos de Flúor , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Ratos , Ratos WistarRESUMO
PURPOSE: Molecular imaging has provided unparalleled opportunities to monitor disease processes, although tools for evaluating infection remain limited. Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by lung injury that we sought to model. Activated macrophages/phagocytes have an important role in lung injury, which is responsible for subsequent respiratory failure and death. We performed pulmonary PET/CT with 124I-iodo-DPA-713, a low-molecular-weight pyrazolopyrimidine ligand selectively trapped by activated macrophages cells, to evaluate the local immune response in a hamster model of SARS-CoV-2 infection. PROCEDURES: Pulmonary 124I-iodo-DPA-713 PET/CT was performed in SARS-CoV-2-infected golden Syrian hamsters. CT images were quantified using a custom-built lung segmentation tool. Studies with DPA-713-IRDye680LT and a fluorescent analog of DPA-713 as well as histopathology and flow cytometry were performed on post-mortem tissues. RESULTS: Infected hamsters were imaged at the peak of inflammatory lung disease (7 days post-infection). Quantitative CT analysis was successful for all scans and demonstrated worse pulmonary disease in male versus female animals (P < 0.01). Increased 124I-iodo-DPA-713 PET activity co-localized with the pneumonic lesions. Additionally, higher pulmonary 124I-iodo-DPA-713 PET activity was noted in male versus female hamsters (P = 0.02). DPA-713-IRDye680LT also localized to the pneumonic lesions. Flow cytometry demonstrated a higher percentage of myeloid and CD11b + cells (macrophages, phagocytes) in male versus female lung tissues (P = 0.02). CONCLUSION: 124I-Iodo-DPA-713 accumulates within pneumonic lesions in a hamster model of SARS-CoV-2 infection. As a novel molecular imaging tool, 124I-Iodo-DPA-713 PET could serve as a noninvasive, clinically translatable approach to monitor SARS-CoV-2-associated pulmonary inflammation and expedite the development of novel therapeutics for COVID-19.
Assuntos
Acetamidas/química , COVID-19/diagnóstico por imagem , COVID-19/veterinária , Radioisótopos do Iodo/química , Tomografia por Emissão de Pósitrons , Pirazóis/química , Pirimidinas/química , SARS-CoV-2/fisiologia , Animais , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pulmão/virologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Células VeroRESUMO
Vascular endothelial growth factors (VEGFs) regulate significant pathways in angiogenesis, myocardial and neuronal protection, metabolism, and cancer progression. The VEGF-B growth factor is involved in cell survival, anti-apoptotic and antioxidant mechanisms, through binding to VEGF receptor 1 and neuropilin-1 (NRP1). We employed surface plasmon resonance technology and X-ray crystallography to analyse the molecular basis of the interaction between VEGF-B and the b1 domain of NRP1, and developed VEGF-B C-terminus derived peptides to be used as chemical tools for studying VEGF-B - NRP1 related pathways. Peptide lipidation was used as a means to stabilise the peptides. VEGF-B-derived peptides containing a C-terminal arginine show potent binding to NRP1-b1. Peptide lipidation increased binding residence time and improved plasma stability. A crystal structure of a peptide with NRP1 demonstrated that VEGF-B peptides bind at the canonical C-terminal arginine binding site. VEGF-B C-terminus imparts higher affinity for NRP1 than the corresponding VEGF-A165 region. This tight binding may impact on the activity and selectivity of the full-length protein. The VEGF-B167 derived peptides were more effective than VEGF-A165 peptides in blocking functional phosphorylation events. Blockers of VEGF-B function have potential applications in diabetes and non-alcoholic fatty liver disease.
Assuntos
Neuropilina-1/metabolismo , Peptídeos/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Humanos , Neuropilina-1/química , Peptídeos/química , Ligação Proteica , Fator B de Crescimento do Endotélio Vascular/químicaRESUMO
Clinically available imaging tools for diagnosing infections rely on structural changes in the affected tissues. They therefore lack specificity and cannot differentiate between oncologic, inflammatory and infectious processes. We have developed 2-deoxy-2-[18F]fluoro-D-sorbitol (18F-FDS) as an imaging agent to visualize infections caused by Enterobacterales, which represent the largest group of bacterial pathogens in humans and are responsible for severe infections, often resulting in sepsis or death. A clinical study in 26 prospectively enrolled patients demonstrated that 18F-FDS positron emission tomography (PET) was safe, and could detect and localize infections due to drug-susceptible or multi-drug-resistant Enterobacterales strains as well as differentiate them from other pathologies (sterile inflammation or cancer). 18F-FDS is cleared almost exclusively through renal filtration and has also shown potential as a PET agent for functional renal imaging. Since most PET radionuclides have a short half-life, maximal clinical impact will require fast, on-demand synthesis with limited infrastructure and personnel. To meet this demand, we developed a kit-based solid phase method that uses commercially and widely available 2-deoxy-2-[18F]fluoro-D-glucose as the precursor and allows 18F-FDS to be produced and purified in one step at room temperature. The 18F-FDS kit consists of a solid-phase extraction cartridge packed with solid supported borohydride (MP-borohydride), which can be attached to a second cartridge to reduce pH. We evaluated the effects of different solid supported borohydride reagents, cartridge size, starting radioactivity, volumes and flow rates in the radiochemical yield and purity. The optimized protocol can be completed in <30 min and allows the synthesis of 18F-FDS in >70% radiochemical yield and >90% radiochemical purity.
Assuntos
Tomografia por Emissão de Pósitrons , Sorbitol , Rim , RadioquímicaRESUMO
Alzheimer's disease (AD) is associated with the presence of amyloid plaques in the brain mainly comprised of aggregated forms of amyloid-ß (Aß). Molecules radiolabeled with technetium-99m that cross the blood-brain barrier (BBB) and selectively bind to Aß plaques have the potential to assist in the diagnosis of AD using single-photon emission computed tomography imaging. In this work, three new tetradentate ligands of pyridyl, amide, amine and thiol donors, featuring a styrylpyridyl group that is known to interact with amyloid plaques, were prepared. The new ligands formed charge-neutral and lipophilic complexes with the [TcâO]3+ and [ReâO]3+ motifs, and two rhenium complexes were characterized by X-ray crystallography. The rhenium(V) complexes interact with synthetic Aß1-40 and amyloid plaques on human brain tissue. Two of the new ligands were radiolabeled with 99mTc using a kit-based approach, and their biodistribution in wild-type mice was evaluated. The presence of amide donors in the tetradentate ligand increased the stability of the respective [TcâO]3+ complexes but reduced brain uptake. While the complexes were able to cross the BBB, the degree of uptake in the brain was not sufficient to justify further investigation of these complexes.
Assuntos
Doença de Alzheimer/diagnóstico por imagem , Complexos de Coordenação/química , Compostos de Organotecnécio/química , Compostos Radiofarmacêuticos/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacocinética , Humanos , Ligantes , Camundongos , Compostos de Organotecnécio/síntese química , Compostos de Organotecnécio/metabolismo , Compostos de Organotecnécio/farmacocinética , Fragmentos de Peptídeos/metabolismo , Piridinas/síntese química , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Rênio/química , Estirenos/síntese química , Estirenos/química , Estirenos/metabolismo , Estirenos/farmacocinéticaRESUMO
In the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males than in females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8 to 10 weeks of age) were inoculated intranasally with 105 50% tissue culture infective dose (TCID50) of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developed more extensive pneumonia as noted on chest computed tomography, and recovered more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including interferon-ß (IFN-ß) and tumor necrosis factor-α (TNF-α), were comparable between the sexes. However, during the recovery phase of infection, females mounted 2-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole-inactivated SARS-CoV-2 and mutant S-RBDs as well as virus-neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2-associated sex differences seen in the human population. IMPORTANCE Men experience more severe outcomes from coronavirus disease 2019 (COVID-19) than women. Golden Syrian hamsters were used to explore sex differences in the pathogenesis of a human isolate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After inoculation, male hamsters experienced greater sickness, developed more severe lung pathology, and recovered more slowly than females. Sex differences in disease could not be reversed by estradiol treatment in males and were not explained by either virus replication kinetics or the concentrations of inflammatory cytokines in the lungs. During the recovery period, antiviral antibody responses in the respiratory tract and plasma, including to newly emerging SARS-CoV-2 variants, were greater in female than in male hamsters. Greater lung pathology during the acute phase combined with lower antiviral antibody responses during the recovery phase of infection in males than in females illustrate the utility of golden Syrian hamsters as a model to explore sex differences in the pathogenesis of SARS-CoV-2 and vaccine-induced immunity and protection.
Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Pulmão/patologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Animais , Formação de Anticorpos/imunologia , Cricetinae , Modelos Animais de Doenças , Estradiol/farmacologia , Feminino , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Interferon beta/análise , Pulmão/diagnóstico por imagem , Pulmão/virologia , Masculino , Fatores Sexuais , Glicoproteína da Espícula de Coronavírus/imunologia , Fator de Necrose Tumoral alfa/análise , Carga ViralRESUMO
Enterobacterales represent the largest group of bacterial pathogens in humans and are responsible for severe, deep-seated infections, often resulting in sepsis or death. They are also a prominent cause of multidrug-resistant (MDR) infections, and some species are recognized as biothreat pathogens. Tools for noninvasive, whole-body analysis that can localize a pathogen with specificity are needed, but no such technology currently exists. We previously demonstrated that positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-d-sorbitol (18F-FDS) can selectively detect Enterobacterales infections in murine models. Here, we demonstrate that uptake of 18F-FDS by bacteria occurs via a metabolically conserved sorbitol-specific pathway with rapid in vitro 18F-FDS uptake noted in clinical strains, including MDR isolates. Whole-body 18F-FDS PET/computerized tomography (CT) in 26 prospectively enrolled patients with either microbiologically confirmed Enterobacterales infection or other pathologies demonstrated that 18F-FDS PET/CT was safe, could rapidly detect and localize Enterobacterales infections due to drug-susceptible or MDR strains, and differentiated them from sterile inflammation or cancerous lesions. Repeat imaging in the same patients monitored antibiotic efficacy with decreases in PET signal correlating with clinical improvement. To facilitate the use of 18F-FDS, we developed a self-contained, solid-phase cartridge to rapidly (<10 min) formulate ready-to-use 18F-FDS from commercially available 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) at room temperature. In a hamster model, 18F-FDS PET/CT also differentiated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia from secondary Klebsiella pneumoniae pneumonia-a leading cause of complications in hospitalized patients with COVID-19. These data support 18F-FDS as an innovative and readily available, pathogen-specific PET technology with clinical applications.
Assuntos
Infecções por Enterobacteriaceae/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , COVID-19 , Fluordesoxiglucose F18 , Humanos , Tomografia por Emissão de PósitronsRESUMO
In the ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males compared with females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8-10 weeks of age) were inoculated intranasally with 10 5 TCID 50 of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developing more extensive pneumonia as noted on chest computed tomography, and recovering more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including IFNb and TNFa, were comparable between the sexes. However, during the recovery phase of infection, females mounted two-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole inactivated SARS-CoV-2 and mutant S-RBDs, as well as virus neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2 associated sex differences seen in the human population.
RESUMO
Oxazolidinones are a novel class of antibacterials with excellent activity against resistant Gram-positive bacteria including strains causing multidrug-resistant tuberculosis (TB). Despite their excellent efficacy, optimal dosing strategies to limit their toxicities are still under development. Here, we developed a novel synthetic strategy for fluorine-18-radiolabeled oxazolidinones. As proof-of-concept, we performed whole-body 18F-linezolid positron emission tomography (PET) in a mouse model of pulmonary TB for noninvasive in situ measurements of time-activity curves in multiple compartments with subsequent confirmation by ex vivo tissue gamma counting. After intravenous injection, 18F-linezolid rapidly distributed to all organs with excellent penetration into Mycobacterium tuberculosis-infected lungs. Drug biodistribution studies with PET can provide unbiased, in situ drug measurements, which could boost efforts to optimize antibiotic dosing strategies.
Assuntos
Linezolida/farmacocinética , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Animais , Radioisótopos de Flúor , Pulmão/diagnóstico por imagem , Camundongos , Tomografia por Emissão de Pósitrons , Distribuição TecidualRESUMO
Ebselen, a potential new lithium-like drug, treatment reduced brain glutamate, as measured by PET imaging using the mGluR5 radioligand [18 F]FPEB in rats.
Assuntos
Azóis/farmacologia , Encéfalo/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Compostos Organosselênicos/farmacologia , Psicotrópicos/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Transmissão Sináptica , Animais , Encéfalo/diagnóstico por imagem , Isoindóis , Tomografia por Emissão de Pósitrons , Ligação Proteica , Ratos , Ratos Sprague-DawleyRESUMO
Bacterial infections remain a major threat to humanity and are a leading cause of death and disability. Antimicrobial resistance has been declared as one of the top ten threats to human health by the World Health Organization, and new technologies are urgently needed for the early diagnosis and monitoring of deep-seated and complicated infections in hospitalized patients. This review summarizes the radiotracers as applied to imaging of bacterial infections. We summarize the recent progress in the development of pathogen-specific imaging and the application of radiotracers in understanding drug pharmacokinetics as well as the local biology at the infection sites. We also highlight the opportunities for medicinal chemists in radiotracer development for bacterial infections, with an emphasis on target selection and radiosynthetic approaches. Imaging of infections is an emerging field. Beyond clinical applications, these technologies could provide unique insights into disease pathogenesis and expedite bench-to-bedside translation of new therapeutics.
Assuntos
Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Desenvolvimento de Medicamentos/tendências , Imagem Molecular/tendências , Traçadores Radioativos , Animais , Bactérias/química , Infecções Bacterianas/diagnóstico , Desenvolvimento de Medicamentos/métodos , Humanos , Imagem Molecular/métodos , Radioisótopos/química , Radioisótopos/metabolismoRESUMO
Neuropilin-1 (NRP1) is emerging as an important molecule in immune signaling where it has been shown to modulate the actions of TGF-ß1 in macrophages and regulatory T cells. The development of cost-effective and reliable assays for NRP1 binding is therefore important. We synthesized three new NRP1 small molecule fluorophores and examined their performance as fluorescent polarization probes. One molecule DS108 exhibited favorable binding and fluorescent characteristics and allowed us to establish a simple assay suitable for medium to high throughput screening of small molecules.
Assuntos
Corantes Fluorescentes/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Neuropilina-1/metabolismo , Corantes Fluorescentes/síntese química , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Diabetic foot infections (DFIs) are a common, complex, and costly medical problem with increasing prevalence. Diagnosing DFIs is a clinical challenge due to the poor specificity of the available methods to accurately determine the presence of infection in these patients. However, failure to perform an opportune diagnosis and provide optimal antibiotic therapy can lead to higher morbidity for the patient, unnecessary amputations, and increased healthcare costs. Novel developments in bacteria-specific molecular imaging can provide a non-invasive assessment of the infection site to support diagnosis, determine the extension and location of the infection, guide the selection of antibiotics, and monitor the response to treatment. This is a review of recent research in molecular imaging of infections in the context of DFI. We summarize different clinical and preclinical methods and the translational implications aimed to improve the care of patients with DFI.
Assuntos
Infecções Bacterianas/diagnóstico por imagem , Pé Diabético/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Pé Diabético/tratamento farmacológico , Pé Diabético/microbiologia , Humanos , Imageamento por Ressonância Magnética/métodosRESUMO
Bedaquiline is a promising drug against tuberculosis (TB), but limited data are available on its intralesional pharmacokinetics. Moreover, current techniques rely on invasive tissue resection, which is difficult in humans and generally limited even in animals. In this study, we developed a novel radiosynthesis for 76Br-bedaquiline and performed noninvasive, longitudinal whole-body positron emission tomography (PET) in live, Mycobacterium tuberculosis-infected mice over 48 h. After the intravenous injection, 76Br-bedaquiline distributed to all organs and selectively localized to adipose tissue and liver, with excellent penetration into infected lung lesions (86%) and measurable penetration into the brain parenchyma (15%). Ex vivo high resolution, two-dimensional autoradiography, and same section hematoxylin/eosin and immunofluorescence provided detailed intralesional drug biodistribution. PET bioimaging and high-resolution autoradiography are novel techniques that can provide detailed, multicompartment, and intralesional pharmacokinetics of new and existing TB drugs. These technologies can significantly advance efforts to optimize drug dosing.