Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Neurol Sci ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499887

RESUMO

Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a discrete nosological entity characterized by punctate and curvilinear gadolinium enhancement "peppering" the pons and a strong response to steroids. MRI images typically show pontine and cerebellar punctate-enhancing lesions, which occasionally spread up to the juxtacortical areas and down to the spinal cord. Interestingly, the more distant the lesion is from the pons, the less intense they become. Herein, we describe an extremely rare case of CLIPPERS presenting with predominant spinal cord involvement; then, we searched in the literature the available cases with a similar presentation. Our case focuses attention on a rare MRI CLIPPERS presentation. Since CLIPPERS has a dramatic response to corticosteroid treatment, it is fundamental to promptly recognize its MRI pattern to start treatment as soon as possible.

2.
Clin Neurophysiol ; 158: 114-136, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38218077

RESUMO

Non-invasive brain stimulation techniques have been exploited in motor neuron disease (MND) with multifold objectives: to support the diagnosis, to get insights in the pathophysiology of these disorders and, more recently, to slow down disease progression. In this review, we consider how neuromodulation can now be employed to treat MND, with specific attention to amyotrophic lateral sclerosis (ALS), the most common form with upper motoneuron (UMN) involvement, taking into account electrophysiological abnormalities revealed by human and animal studies that can be targeted by neuromodulation techniques. This review article encompasses repetitive transcranial magnetic stimulation methods (including low-frequency, high-frequency, and pattern stimulation paradigms), transcranial direct current stimulation as well as experimental findings with the newer approach of trans-spinal direct current stimulation. We also survey and discuss the trials that have been performed, and future perspectives.


Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Estimulação Transcraniana por Corrente Contínua , Animais , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/terapia , Doença dos Neurônios Motores/diagnóstico , Doença dos Neurônios Motores/terapia , Neurônios Motores/fisiologia , Encéfalo , Estimulação Magnética Transcraniana/métodos
3.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38100323

RESUMO

tACS (transcranial alternating current stimulation) is a technique for modulating brain activity through electrical current. Its effects depend on cortical entrainment, which is most effective when transcranial alternating current stimulation matches the brain's natural rhythm. High-frequency oscillations produced by external stimuli are useful for studying the somatosensory pathway. Our study aims to explore transcranial alternating current stimulation's impact on the somatosensory system when synchronized with individual high-frequency oscillation frequencies. We conducted a randomized, sham-controlled study with 14 healthy participants. The study had three phases: Individualized transcranial alternating current stimulation (matching the individual's high-frequency oscillation rhythm), Standard transcranial alternating current stimulation (600 Hz), and sham stimulation. We measured early and late HFO components after median nerve electrical stimulation at three time points: before (T0), immediately after (T1), and 10 min after transcranial alternating current stimulation (T2). Compared to Sham and Standard stimulation Individualized transcranial alternating current stimulation significantly enhanced high-frequency oscillations, especially the early component, immediately after stimulation and for at least 15 min. No other effects were observed for other high-frequency oscillation measures. In summary, our study provides initial evidence that transcranial alternating current stimulation synchronized with an individual's high-frequency oscillation frequency can precisely and time-specifically modulate thalamocortical activity. These insights may pave the way for innovative, personalized neuromodulation methods for the somatosensory system.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos
4.
Front Hum Neurosci ; 17: 1219737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021245

RESUMO

The semantic variant of primary progressive aphasia (svPPA), known also as "semantic dementia (SD)," is a neurodegenerative disorder that pertains to the frontotemporal lobar degeneration clinical syndromes. There is currently no approved pharmacological therapy for all frontotemporal dementia variants. Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation technique capable of modulating cortical excitability through a sub-threshold shift in neuronal resting potential. This technique has previously been applied as adjunct treatment in Alzheimer's disease, while data for frontotemporal dementia are controversial. In this scoped review, we summarize and critically appraise the currently available evidence regarding the use of tDCS for improving performance in naming and/or matching tasks in patients with svPPA. Clinical trials addressing this topic were identified through MEDLINE (accessed by PubMed) and Web of Science, as of November 2022, week 3. Clinical trials have been unable to show a significant benefit of tDCS in enhancing semantic performance in svPPA patients. The heterogeneity of the studies available in the literature might be a possible explanation. Nevertheless, the results of these studies are promising and may offer valuable insights into methodological differences and overlaps, raising interest among researchers in identifying new non-pharmacological strategies for treating svPPA patients. Further studies are therefore warranted to investigate the potential therapeutic role of tDCS in svPPA.

5.
Clin Neurophysiol ; 156: 98-105, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918223

RESUMO

OBJECTIVE: To evaluate cortical circuits and excitability of the motor cortex in the hemisphere contralateral to the affected (AH) and to the unaffected arm (UH), in upper limb amputees. METHODS: Motor evoked potentials (MEP) were recorded in 17 subjects who had upper limb amputation: 11 trans-radial (TR) and 6 trans-humeral (TH). Motor thresholds (MT), short interval intracortical inhibition (SICI), and interhemispheric inhibition (IHI) in the available arm muscles of the stump were evaluated. RESULTS: There was no significant difference in MT between hemispheres. SICI was preserved in TR but not in TH group. Additionally, in the TR group, the MEP amplitudes in AH were higher than in UH. A significant IHI was observed in the whole sample but not in each hemisphere or patient group. CONCLUSIONS: In our population of TR amputees, we found increased corticospinal excitability in the AH with preserved intracortical inhibition. This finding was not observed in the TH population. SIGNIFICANCE: Understanding the changes in intracortical excitability in amputees may enhance knowledge of the functional reorganization of the brain in the post-amputation phase, bringing useful information for prosthetic rehabilitation.


Assuntos
Amputados , Córtex Motor , Humanos , Braço , Estimulação Magnética Transcraniana , Amputação Cirúrgica , Potencial Evocado Motor/fisiologia , Inibição Neural/fisiologia
6.
Mult Scler Relat Disord ; 78: 104931, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37603929

RESUMO

BACKGROUND: Multiple Sclerosis (MS) is a chronic disease with a high prevalence of neuropsychiatric symptoms. Mindfulness is a practice that encourages individuals to cultivate a present-focused, acceptance-based approach for managing psychological distress. Its positive effect on MS has been demonstrated, but learning such technique is expensive and time-consuming. In this study, we investigated the feasibility and efficacy of an 8-week, at-home, smart-device aided mindfulness program in a cohort of MS patients. Specifically, we explored the role of a brain-sensing headband providing real-time auditory feedback as supportive tool for meditation exercises. METHODS: The study included two visits, one at baseline and another after the mindfulness program. We measured adherence to the proposed mindfulness treatment and its effect on questionnaires investigating different psychological domains, cognition, fatigue, quality of life and quantitative EEG parameters. All participants received a smart biofeedback device to be used during the therapeutic program consisting of daily meditative exercises. RESULTS: Twenty-nine patients were recruited for the present study. Among them, 27 (93%) completed the entire program and 17 (63%) completed more than 80% of the scheduled sessions. We observed a statistically significant reduction of the Ruminative Response Scale score and a significant increase of the Digit Span Backward. Regarding neurophysiological data, we found a significant reduction of the whole-scalp beta and parieto-occipital theta power post intervention. CONCLUSION: Our results show that an at-home, smart-device aided mindfulness program is feasible for people with MS. The efficacy in terms of reappraisals of stress, cognitive and emotional coping responses is also supported by our neurophysiological data. Further studies are warranted to better explore the role of such approaches in managing the psychological impact of MS diagnosis.

8.
Front Hum Neurosci ; 17: 1247104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645690

RESUMO

Over the past decades, among all the non-invasive brain stimulation (NIBS) techniques, those aiming for neuromodulatory protocols have gained special attention. The traditional neurophysiological outcome to estimate the neuromodulatory effect is the motor evoked potential (MEP), the impact of NIBS techniques is commonly estimated as the change in MEP amplitude. This approach has several limitations: first, the use of MEP limits the evaluation of stimulation to the motor cortex excluding all the other brain areas. Second, MEP is an indirect measure of brain activity and is influenced by several factors. To overcome these limitations several studies have used new outcomes to measure brain changes after neuromodulation techniques with the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalogram (EEG). In the present review, we examine studies that use TMS-EEG before and after a single session of neuromodulatory TMS. Then, we focused our literature research on the description of the different metrics derived from TMS-EEG to measure the effect of neuromodulation.

10.
Front Neurol ; 14: 1176744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333012

RESUMO

Background: Commercially available health devices are gaining momentum and represent a great opportunity for monitoring patients for prolonged periods. This study aimed at testing the feasibility of a smart device-based secondary prevention program in a cohort of patients with cryptogenic stroke. Methods: In this proof-of-principle study, patients with non-disabling ischemic stroke and transient ischemic attacks (TIA) in the subacute phase were provided with a smartwatch and smart devices to monitor several parameters - i.e., oxygen saturation, blood pressure, steps a day, heart rate and heart rate variability - for a 4-week period (watch group). This group was compared with a standard-of-care group. Our primary endpoint was the compliance with the use of smart devices that was evaluated as the number of measures performed during the observation period. Results: In total, 161 patients were recruited, 87 in the WATCH group and 74 in the control group. In the WATCH group, more than 90% of patients recorded the ECG at least once a day. In total, 5,335 ECGs were recorded during the study. The median blood pressure value was 132/78 mmHg and the median oxygen saturation value was 97%. From a clinical standpoint, although not statistically significant, nine atrial fibrillation episodes (10.3%) in the WATCH group vs. 3 (4%) in the control group were detected. Conclusion: Our study suggests that prevention programs for cerebrovascular disease may benefit from the implementation of new technologies.

11.
Front Neurol ; 14: 1178408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181549

RESUMO

Ischemic stroke is characterized by a complex cascade of events starting from vessel occlusion. The term "penumbra" denotes the area of severely hypo-perfused brain tissue surrounding the ischemic core that can be potentially recovered if blood flow is reestablished. From the neurophysiological perspective, there are local alterations-reflecting the loss of function of the core and the penumbra-and widespread changes in neural networks functioning, since structural and functional connectivity is disrupted. These dynamic changes are closely related to blood flow in the affected area. However, the pathological process of stroke does not end after the acute phase, but it determines a long-term cascade of events, including changes of cortical excitability, that are quite precocious and might precede clinical evolution. Neurophysiological tools-such as Transcranial Magnetic Stimulation (TMS) or Electroencephalography (EEG)-have enough time resolution to efficiently reflect the pathological changes occurring after stroke. Even if they do not have a role in acute stroke management, EEG and TMS might be helpful for monitoring ischemia evolution-also in the sub-acute and chronic stages. The present review aims to describe the changes occurring in the infarcted area after stroke from the neurophysiological perspective, starting from the acute to the chronic phase.

12.
J Neurol ; 270(6): 2826-2852, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37014421

RESUMO

During the SARS-CoV2 pandemic, several cases of Posterior Reversible Encephalopathy Syndrome (PRES) and of Reversible Cerebral Vasoconstriction Syndrome (RCVS) in COVID-19 patients have been reported, but the link between these syndromes and COVID-19 is unclear. We performed a systematic review, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to evaluate whether SARS-CoV2 infection or the drugs used to treat it could be deemed potential risk factors for PRES or RCVS. We performed a literature search. We found 70 articles (60 on PRES and 10 on RCVS) concerning n = 105 patients (n = 85 with PRES, n = 20 with RCVS). We analyzed the clinical characteristics of the two populations separately, then performed an inferential analysis to search for other independent risk factors. We found fewer than usual PRES-related (43.9%) and RCVS-related (45%) risk factors in patients with COVID-19. Such a low incidence of risk factors for PRES and RCVS might suggest the involvement of COVID-19 as an additional risk factor for both diseases due to its capability to cause endothelial dysfunction. We discuss the putative mechanisms of endothelial damage by SARS-CoV2 and antiviral drugs which may underlie the development of PRES and RCVS.


Assuntos
COVID-19 , Transtornos Cerebrovasculares , Síndrome da Leucoencefalopatia Posterior , Humanos , Síndrome da Leucoencefalopatia Posterior/complicações , Síndrome da Leucoencefalopatia Posterior/diagnóstico por imagem , COVID-19/complicações , Vasoconstrição , RNA Viral , SARS-CoV-2 , Transtornos Cerebrovasculares/complicações
14.
Neural Regen Res ; 18(2): 284-288, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900404

RESUMO

In the last two years, a new severe acute respiratory syndrome coronavirus (SARS-CoV) infection has spread worldwide leading to the death of millions. Vaccination represents the key factor in the global strategy against this pandemic, but it also poses several problems, especially for vulnerable people such as patients with multiple sclerosis. In this review, we have briefly summarized the main findings of the safety, efficacy, and acceptability of Coronavirus Disease 2019 (COVID-19) vaccination for multiple sclerosis patients. Although the acceptability of COVID-19 vaccines has progressively increased in the last year, a small but significant part of patients with multiple sclerosis still has relevant concerns about vaccination that make them hesitant about receiving the COVID-19 vaccine. Overall, available data suggest that the COVID-19 vaccination is safe and effective in multiple sclerosis patients, even though some pharmacological treatments such as anti-CD20 therapies or sphingosine l-phosphate receptor modulators can reduce the immune response to vaccination. Accordingly, COVID-19 vaccination should be strongly recommended for people with multiple sclerosis and, in patients treated with anti-CD20 therapies and sphingosine l-phosphate receptor modulators, and clinicians should evaluate the appropriate timing for vaccine administration. Further studies are necessary to understand the role of cellular immunity in COVID-19 vaccination and the possible usefulness of booster jabs. On the other hand, it is mandatory to learn more about the reasons why people refuse vaccination. This would help to design a more effective communication campaign aimed at increasing vaccination coverage among vulnerable people.

15.
Neurol Sci ; 44(1): 339-342, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36207651

RESUMO

Isolated cognitive relapses (ICRs) have been a matter of debate for the past few years. Currently, there is no clear consensus on such an entity, as cognitive decline usually accompanies typical multiple sclerosis (MS) relapses. Herein, we present the neuropsychological and neurophysiological manifestations of a patient who suddenly complained of confusion and memory loss, showing insight into her deficit, in absence of sensorimotor disturbances. Neuroimaging revealed a large tumefactive gadolinium-enhancing lesion localized in the left medial temporal lobe. The patient's symptoms persisted for months afterwards, despite corticosteroid treatment. We believe our patient experienced a true ICR. ICRs are rare entities in MS, but we should be alert to their existence in order to treat them promptly. Deepening their pathophysiology is equally important and neuropsychology combined with neurophysiology may be useful in this regard.


Assuntos
Disfunção Cognitiva , Esclerose Múltipla , Humanos , Feminino , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/psicologia , Transtornos da Memória , Doença Crônica , Recidiva , Cognição , Imageamento por Ressonância Magnética
16.
Front Neurosci ; 17: 1304080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249578

RESUMO

Introduction: Folliculin, encoded by FLCN gene, plays a role in the mTORC1 autophagy cascade and its alterations are responsible for the Birt-Hogg-Dubé (BHD) syndrome, characterized by follicle hamartomas, kidney tumors and pneumothorax. Patient and results: We report a 74-years-old woman diagnosed with dementia and carrying a FLCN alteration in absence of any sign of BHD. She also carried an alteration of MAT1A gene, which is also implicated in the regulation of mTORC1. Discussion: The MAT1A variant could have prevented the development of a FLCN-related oncological phenotype. Conversely, our patient presented with dementia that, to date, has yet to be documented in BHD. Folliculin belongs to the DENN family proteins, which includes C9orf72 whose alteration has been associated to neurodegeneration. The folliculin perturbation could affect the C9orf72 activity and our patient could represent the first human model of a relationship between FLCN and C9orf72 across the path of autophagy.

17.
J Stroke ; 24(3): 323-334, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221935

RESUMO

The spread of smartphones and mobile-Health (m-health) has progressively changed clinical practice, implementing access to medical knowledge and communication between doctors and patients. Dedicated software called Applications (or Apps), assists the practitioners in the various phases of clinical practice, from diagnosis to follow-up and therapy management. The impact of this technology is even more important in diseases such as stroke, which are characterized by a complex management that includes several moments: primary prevention, acute phase management, rehabilitation, and secondary prevention. This review aims to evaluate and summarize the available literature on Apps for the clinical management of stroke. We described their potential and weaknesses, discussing potential room for improvement. Medline databases were interrogated for studies concerning guideline-based decision support Apps for stroke management and other medical scenarios from 2007 (introduction of the first iPhone) until January 2022. We found 551 studies. Forty-three papers were included because they fitted the scope of the review. Based on their purpose, Apps were classified into three groups: primary prevention Apps, acute stroke management Apps, and post-acute stroke Apps. We described the aim of each App and, when available, the results of clinical studies. For acute stroke, several Apps have been designed with the primary purpose of helping communication and sharing of patients' clinical data among healthcare providers. However, interactive systems Apps aiming to assist clinicians are still lacking, and this field should be developed because it may improve stroke patients' management.

18.
Clin Neurophysiol ; 144: 135-141, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36210268

RESUMO

OBJECTIVE: Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs. METHODS: The interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script. RESULTS: Thirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between -1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak. CONCLUSIONS: Coupling peripheral and cortical stimulation at early interstimulus intervals - before the SEPs N20 peak - may modulate muscle response. SIGNIFICANCE: Our findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway.


Assuntos
Potencial Evocado Motor , Córtex Motor , Humanos , Potencial Evocado Motor/fisiologia , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana , Córtex Motor/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Nervo Mediano/fisiologia , Estimulação Elétrica , Vias Aferentes/fisiologia
19.
Brain Sci ; 12(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35447982

RESUMO

The eight-and-a-half syndrome is a rare neuro-ophthalmological condition caused by a structural lesion in the dorsal portion of the pons, involving critical areas of the brainstem, i.e., medial longitudinal fasciculus (MLF), abducens nucleus, facial genu, and colliculus. It is characterized by internuclear ophthalmoplegia with horizontal gaze palsy and peripheral facial palsy. Although the syndrome is most frequently caused by vascular or demyelinating diseases, several different underlying causes might occur. Herein, we describe a case of the eight-and-a-half syndrome caused by a lung adenocarcinoma metastasis localized in the lower pontine tegmentum. Then, we review the current literature on the underlying causes of the eight-and-a-half syndrome.

20.
Handb Clin Neurol ; 184: 299-315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034743

RESUMO

Stroke is the second most common cause of death worldwide and its prevalence is projected to increase in the coming years in parallel with the increase of life expectancy. Despite the great improvements in the management of the acute phase of stroke, some residual disability persists in most patients thus requiring rehabilitation. One third of patients do not reach the maximal recovery potential and different approaches have been explored with the aim to boost up recovery. In this regard, noninvasive brain stimulation techniques have been widely used to induce neuroplasticity phenomena. Different protocols of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES) can induce short- and long-term changes of synaptic excitability and are promising tools for enhancing recovery in stroke patients. New options for neuromodulation are currently under investigation. They include: vagal nerve stimulation (VNS) that can be delivered invasively, with implanted stimulators and noninvasively with transcutaneous VNS (tVNS); and extremely low-frequency (1-300Hz) magnetic fields. This chapter will provide an overview on the new techniques that are used for neuroprotection and for enhancing recovery after stroke.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Plasticidade Neuronal , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/terapia , Estimulação Magnética Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA