Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7065, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152112

RESUMO

The sympathetic nervous system controls bodily functions including vascular tone, cardiac rhythm, and the "fight-or-flight response". Sympathetic chain ganglia develop in parallel with preganglionic motor nerves extending from the neural tube, raising the question of whether axon targeting contributes to sympathetic chain formation. Using nerve-selective genetic ablations and lineage tracing in mouse, we reveal that motor nerve-associated Schwann cell precursors (SCPs) contribute sympathetic neurons and satellite glia after the initial seeding of sympathetic ganglia by neural crest. Motor nerve ablation causes mispositioning of SCP-derived sympathoblasts as well as sympathetic chain hypoplasia and fragmentation. Sympathetic neurons in motor-ablated embryos project precociously and abnormally towards dorsal root ganglia, eventually resulting in fusion of sympathetic and sensory ganglia. Cell interaction analysis identifies semaphorins as potential motor nerve-derived signaling molecules regulating sympathoblast positioning and outgrowth. Overall, central innervation functions both as infrastructure and regulatory niche to ensure the integrity of peripheral ganglia morphogenesis.


Assuntos
Gânglios Simpáticos , Neurônios Motores , Crista Neural , Células de Schwann , Sistema Nervoso Simpático , Animais , Sistema Nervoso Simpático/embriologia , Camundongos , Neurônios Motores/fisiologia , Células de Schwann/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Gânglios Simpáticos/citologia , Gânglios Espinais , Semaforinas/metabolismo , Semaforinas/genética , Camundongos Transgênicos , Neuroglia/metabolismo , Feminino
2.
ACS Appl Mater Interfaces ; 16(27): 35825-35833, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38941159

RESUMO

Sequential infiltration synthesis (SIS) is a scalable and valuable technique for the synthesis of organic-inorganic materials with several potential applications at the industrial level. Despite the increasing interest for this technique, a clear picture of the fundamental physicochemical phenomena governing the SIS process is still missing. In this work, infiltration of Al2O3 into thin poly(methyl methacrylate) (PMMA) films using trimethyl aluminum (TMA) and H2O as precursors is investigated by operando dynamic spectroscopic ellipsometry (SE) analysis. The TMA diffusion coefficient values at temperatures ranging from 70 to 100 °C are determined, and the activation energy for the TMA diffusion process in PMMA is found to be Ea = 2.51 ± 0.03 eV. Additionally, systematic data about reactivity of TMA molecules with the PMMA matrix as a function of temperature are obtained. These results provide important information, paving the way to the development of a comprehensive theory for the modeling of the SIS process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA