Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Food ; 23(9): 978-987, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32598197

RESUMO

Solanum sessiliflorum is an Amazonian fruit (cubiu) that has been domesticated since pre-Colombian era. It is also used in folk medicine to treat some clinical conditions. This investigation chemically characterized and analyzed the in vitro antioxidant and antitumoral effect of a cubiu pulp/seed hydroalcoholic extract. Cubiu extract was chemically characterized by high-performance liquid chromatography with diode array detector (HPLC-DAD), its antioxidant capacity measured by 2.2-diphenyl-1-picrylhydrazyl (DPPH) assay, and the following complementary in vitro protocols were performed: (1) cytoprotective effect of cubiu on human peripheral blood mononuclear cells (PBMCs) exposed to H2O2, a genotoxic and procarcinogen molecule; (2) effect of cubiu on low density lipoproteins oxidation; and (3) cytotoxic and antiproliferative effect on breast (MCF-7) and colorectal (HT-29) cancer cell lines. Biochemical and flow cytometry analyses were conducted in these protocols. Cubiu extract presented high concentrations of caffeic and gallic acids, beta-carotene, catechin, quercetin, and rutin, and its antioxidant capacity was confirmed. Cubiu attenuated H2O2 cytotoxicity on PBMCs, presented lowering effect on LDL oxidation, and induced mortality and proliferative inhibition of colorectal cancer cells. In cancer cells, cubiu extract at 10 µg/mL showed similar effects to 5-fluorouracil chemo drug reducing its viability and frequency of S-phase, indicating that cells are undergoing mitosis. In summary, despite the limitations of in vitro protocols, our results suggest that cubiu has several biological properties that affect human health.


Assuntos
Antioxidantes/farmacologia , Frutas/química , Extratos Vegetais/farmacologia , Solanum/química , Células Cultivadas , Humanos , Peróxido de Hidrogênio , Leucócitos Mononucleares/efeitos dos fármacos , Células MCF-7 , Compostos Fitoquímicos/farmacologia
2.
PLoS One ; 9(10): e107299, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330300

RESUMO

Methotrexate (MTX) is a folic acid antagonist used in high doses as an anti-cancer treatment and in low doses for the treatment of some autoimmune diseases. MTX use has been linked to oxidative imbalance, which may cause multi-organ toxicities that can be attenuated by antioxidant supplementation. Despite the oxidative effect of MTX, the influence of antioxidant gene polymorphisms on MTX toxicity is not well studied. Therefore, we analyzed here whether a genetic imbalance of the manganese-dependent superoxide dismutase (SOD2) gene could have some impact on the MTX cytotoxic response. An in vitro study using human peripheral blood mononuclear cells (PBMCs) obtained from carriers with different Ala16Val-SOD2 genotypes (AA, VV and AV) was carried out, and the effect on cell viability and proliferation was analyzed, as well as the effect on oxidative, inflammatory and apoptotic markers. AA-PBMCs that present higher SOD2 efficiencies were more resistance to high MTX doses (10 and 100 µM) than were the VV and AV genotypes. Both lipoperoxidation and ROS levels increased significantly in PBMCs exposed to MTX independent of Ala16Val-SOD2 genotypes, whereas increased protein carbonylation was observed only in PBMCs from V allele carriers. The AA-PBMCs exposed to MTX showed decreasing SOD2 activity, but a concomitant up regulation of the SOD2 gene was observed. A significant increase in glutathione peroxidase (GPX) levels was observed in all PBMCs exposed to MTX. However, this effect was more intense in AA-PBMCs. Caspase-8 and -3 levels were increased in cells exposed to MTX, but the modulation of these genes, as well as that of the Bax and Bcl-2 genes involved in the apoptosis pathway, presented a modulation that was dependent on the SOD2 genotype. MTX at a concentration of 10 µM also increased inflammatory cytokines (IL-1ß, IL-6, TNFα and Igγ) and decreased the level of IL-10 anti-inflammatory cytokine, independent of SOD2 genetic background. The results suggest that potential pharmacogenetic effect on the cytotoxic response to MTX due differential redox status of cells carriers different SOD2 genotypes.


Assuntos
Metotrexato/farmacologia , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase/genética , Antioxidantes/metabolismo , Caspases/genética , Caspases/metabolismo , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Fluoresceínas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Carbonilação Proteica/efeitos dos fármacos , Carbonilação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA