Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 41(12): 1936-46, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11108726

RESUMO

Strain CAST/Ei (CAST) mice exhibit unusually low levels of high density lipoproteins (HDL) as compared with most other strains of mice, including C57BL/6J (B6). This appears to be due in part to a functional deficiency of lecithin:cholesterol acyltransferase (LCAT). LCAT mRNA expression in CAST mice is normal, but the mice exhibit several characteristics consistent with functional deficiency. First, the activity and mass of LCAT in plasma and in HDL of CAST mice were reduced significantly. Second, the HDL of CAST mice were relatively poor in phospholipids and cholesteryl esters, but rich in free cholesterol and apolipoprotein A-I (apoA-I). Third, the adrenals of CAST mice were depleted of cholesteryl esters, a phenotype similar to that observed in LCAT- and acyl-CoA:cholesterol acyltransferase-deficient mice. Fourth, in common with LCAT-deficient mice, CAST mice contained triglyceride-rich lipoproteins with "panhandle"-like protrusions. To examine the genetic bases of these differences, we studied HDL lipid levels in an intercross between strain CAST and the common laboratory strain B6 on a low fat, chow diet as well as a high fat, atherogenic diet. HDL levels exhibited complex inheritance, as 12 quantitative trait loci with significant or suggestive likelihood of observed data scores were identified. Several of the loci occurred over plausible candidate genes and these were investigated. The results indicate that the functional LCAT deficiency is unlikely to be due to variations of the LCAT gene. Our results suggest that novel genes are likely to be important in the control of HDL metabolism, and they provide evidence of genetic factors influencing the interaction of LCAT with HDL.


Assuntos
HDL-Colesterol/sangue , Glândulas Suprarrenais/metabolismo , Animais , Apolipoproteína A-I/sangue , Sequência de Bases , Cruzamentos Genéticos , Primers do DNA , Metabolismo dos Lipídeos , Escore Lod , Camundongos , Microscopia Eletrônica , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Característica Quantitativa Herdável , RNA Mensageiro/genética , Especificidade da Espécie
2.
Circ Res ; 79(4): 716-26, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8831495

RESUMO

Insulin-like growth factor II (IGF2) belongs to a family of growth factors that includes insulin and insulin-like growth factor I (IGF1). Although the accumulating evidence indicates that IGF1 is involved in regulating proliferation of ventricular myocytes, the role of IGF2 is less clear. To gain more insight into the functions of IGF2, rat ventricular expression of IGF2 mRNA at four developmental stages was examined by Northern analysis. An abundant IGF2 mRNA of approximately 3.8 kb was detected in fetal ventricles. It was dramatically decreased in neonatal ventricles and became undetectable in juvenile and adult ventricles. Similar expression patterns of the mRNA encoding IGF1 receptor and IGF2 receptor were observed. Since the results of Northern analysis strongly suggest the importance of IGF2 in regulating proliferation of fetal rat ventricular myocytes, the effects of an exogenous IGF2 on DNA synthesis in cultured rat ventricular myocytes were determined. DNA synthesis, which was monitored by measuring 5-bromo-2'-deoxyuridine (BrdU) and [3H]thymidine incorporation, was increased by twofold to threefold in IGF2-stimulated fetal ventricular myocytes, whereas no change in BrdU or [3H]thymidine incorporation was observed in neonatal ventricular myocytes. Instead, IGF2 seemed to induce hypertrophy in neonatal ventricular myocytes. An antisense oligonucleotide against rat IGF2 mRNA was able to significantly reduce BrdU incorporation, and this effect was quantitatively reversed by the addition of exogenous IGF2. Reversion by exogenous IGF2 was abolished by a monoclonal antibody against IGF1 receptor. In conclusion, our results suggest that IGF2 directly regulates proliferation of fetal rat ventricular myocytes in a paracrine/autocrine fashion.


Assuntos
Replicação do DNA/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/embriologia , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/farmacologia , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA