Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Stem Cell ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38723634

RESUMO

Generation of chimeric antigen receptor macrophages (CAR-Ms) from human pluripotent stem cells (hPSCs) offers new prospects for cancer immunotherapy but is currently challenged by low differentiation efficiency and limited function. Here, we develop a highly efficient monolayer-based system that can produce around 6,000 macrophages from a single hPSC within 3 weeks. Based on CAR structure screening, we generate hPSC-CAR-Ms with stable CAR expression and potent tumoricidal activity in vitro. To overcome the loss of tumoricidal activity of hPSC-CAR-Ms in vivo, we use interferon-γ and monophosphoryl lipid A to activate an innate immune response that repolarizes the hPSC-CAR-Ms to tumoricidal macrophages. Moreover, through combined activation of T cells by hPSC-CAR-Ms, we demonstrate that activating a collaborative innate-adaptive immune response can further enhance the anti-tumor effect of hPSC-CAR-Ms in vivo. Collectively, our study provides feasible methodologies that significantly improve the production and function of hPSC-CAR-Ms to support their translation into clinical applications.

2.
Hum Gene Ther ; 34(23-24): 1257-1272, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37861302

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy initiates new methods and turns the scale of clinical treatment on relapsed/refractory acute T lymphoblastic leukemia (T-ALL). In this study, we generated the second-generation CD7-targeting CAR-T cells with a new antigen-binding single-chain variable fragment sequence and made it universal via CRISPR-based knockout of TRAC and CD7 genes (termed UCAR-T). The CD7 UCAR-T cells can efficiently proliferate and lyse T-ALL tumor cell in vitro, along with prominent proinflammatory cytokines secretion. A Jurkat-based xenograft mouse model further verified the superior cytotoxicity of the UCAR-T cells in vivo. During the UCAR-T construction, we observed a CD4/CD8 ratio shift among CD7-/- T/CAR-T cells, which motivated us to further analyze the effects of CD7 antigen on T/CAR-T cells. We sorted out CD7+/- T or anti-CD19 CAR-T cells after partially CD7 knockout and performed functional, phenotypic detection, as well as translational analysis. CD7-/- CAR-T cells tended to be CD8 negative and showed slightly better cytotoxicity at long-term assay. RNA-seq further confirmed an elevation of activated CD4 memory cell subpopulation. However, limited distinction on crucial regulatory genes and pathways was revealed, suggesting the safety and feasibility of UCAR-T application as well as the potential translational rather than transcriptional regulation of CD7 antigen.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Antígenos CD7/genética , Imunoterapia Adotiva/métodos , Linfócitos T CD4-Positivos , Expressão Gênica , Antígenos CD19
4.
Exp Hematol Oncol ; 12(1): 64, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488603

RESUMO

BACKGROUND: T cell-redirecting bispecific antibodies establish a connection between endogenous T cells and tumor cells, activating T cells function to eliminate tumor cells without ex vivo genetic alteration or manipulation. Here, we developed a novel dual-specific antibody (DuAb) and an enhanced DuAb (EDuAb) with different stimulation signal to activate T cells, and evaluated their impact on the treatment of acute lymphoblastic leukemia (ALL). METHODS: The expression plasmids of the DuAb and EDuAb containing CD80 molecule were constructed by cloning heavy chain and light chain variable fragments from anti-human CD19 (HI19a) and CD3 (HIT3a) monoclonal antibody hybridomas, respectively. The activation and the anti-tumor efficacy of human T cells mediated by DuAb and EDuAb were evaluated in vitro. B-cell ALL xenograft NSG mouse model was established to investigate the therapeutic effect in vivo. RESULTS: EDuAb promoted the optimal expansion of primary human T cells with low expression of inhibitory markers in vitro than DuAb did. Both DuAb and EDuAb showed a similar capability in inducing healthy donor T cells to specifically eliminate B-ALL cell lines and primary blasts from patients. The similar ability was also observed in the patient-derived T cells. In vivo study showed that both DuAb and EDuAb significantly alleviated tumor burden and extended survival of B-ALL xenograft NSG mice. The median survival of PBS, DuAb and EDuAb treatment groups were 27, 38 and 45 days, respectively. The phenotype of T cells and cytokine release in peripheral blood (PB) of B-ALL xenograft NSG mice on day 24 were analyzed as well. The results showed that the proportion of CD8+ T cells and cytokine levels, including IL-2, IFN-γ and TNF-α, were higher in the EDuAb group than that of DuAb. Moreover, both DuAb and EDuAb significantly decreased the residual leukemia cells in PB of B-ALL xenograft NSG mice. CONCLUSIONS: Both DuAb and EDuAb showed great potential as novel treatments for B-ALL in clinical applications. However, compared to DuAb, EDuAb showed a significant advantage in promoting the proliferation and survival of T cells. Furthermore, EDuAb showed a better promising effect on eliminating tumor cells and extending survival in vivo, which provides new insights for the development of new multi-specific antibodies.

5.
Cytotherapy ; 25(10): 1080-1090, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516949

RESUMO

BACKGROUND AIMS: Decades after the identification of natural killer (NK) cells as potential effector cells against malignantly transformed cells, an increasing amount of research suggests that NK cells are a prospective choice of immunocytes for cancer immunotherapy in addition to T lymphocytes for cancer immunotherapy. Recent studies have led to a breakthrough in the combination of hematopoietic stem-cell transplantation with allogeneic NK cells infusion for the treatment of malignant tumors. However, the short lifespan of NK cells in patients is the major impediment, limiting their efficacy. Therefore, prolonging the survival of NK cells will promote the application of NK-cell immunotherapy. As we have known, NK cells use a "missing-self" mechanism to lyse target cells and exert their functions through a wide array of activating, co-stimulatory and inhibitory receptors. Our previous study has suggested that CD244 (2B4), one of the co-stimulatory receptors, can improve the function of chimeric antigen receptor NK cells. However, the underlying mechanism of how 2B4 engages in the function of NK cells requires further investigation. Overall, we established a feeder cell with the expression of CD48, the ligand of 2B4, to investigate the function of 2B4-CD48 axis in NK cells, and meanwhile, to explore whether the newly generated feeder cell can improve the function of ex vivo-expanded NK cells. METHODS: First, K562 cells overexpressing 4-1BBL and membrane-bound IL-21 (mbIL-21) were constructed (K562-41BBL-mbIL-21) and were sorted to generate the single clone. These widely used feeder cells (K562-41BBL-mbIL-21) were named as Basic Feeder hereinafter. Based on the Basic feeder, CD48 was overexpressed and named as CD48 Feeder. Then, the genetically modified feeder cells were used to expand primary NK cells from peripheral blood or umbilical cord blood. In vitro experiments were performed to compare proliferation ability, cytotoxicity, survival and activation/inhibition phenotypes of NK cells stimulated via different feeder cells. K562 cells were injected into nude mice subcutaneously with tail vein injection of NK cells from different feeder system for the detection of NK in vivo persistence and function. RESULTS: Compared with Basic Feeders, CD48 Feeders can promote the proliferation of primary NK cells from peripheral blood and umbilical cord blood and reduce NK cell apoptosis by activating the p-ERK/BCL2 pathway both in vitro and in vivo without affecting overall phenotypes. Furthermore, NK cells expanded via CD48 Feeders showed stronger anti-tumor capability and infiltration ability into the tumor microenvironment. CONCLUSIONS: In this preclinical study, the engagement of the 2B4-CD48 axis can inhibit the apoptosis of NK cells through the p-ERK/BCL2 signal pathway, leading to an improvement in therapeutic efficiency.


Assuntos
Neoplasias , Receptores Imunológicos , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Apoptose , Antígeno CD48/metabolismo , Células Matadoras Naturais , Ativação Linfocitária , Camundongos Nus , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Microambiente Tumoral
7.
Leukemia ; 36(2): 403-415, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34381181

RESUMO

Regulatory T cells (Tregs) could maintain the characteristics of stem cells and inhibit the differentiation of normal hematopoietic stem/progenitor cells. Recent studies have shown that Tregs, as an important component of acute myeloid leukemia (AML) microenvironments, can help AML cells to evade immune surveillance. However, their function in directly regulating the stemness of AML cells remains elusive. In this study, the increased stemness of AML cells promoted by Tregs was verified in vitro and in vivo. The cytokines released by Tregs were explored, the highly expressed anti-inflammatory cytokine IL10 was found, which could promote the stemness of AML cells through the activation of PI3K/AKT signal pathway. Moreover, disrupting the IL10/IL10R/PI3K/AKT signal in AML/ETO c-kitmut (A/Ec) leukemia mice could prolong the mice survival and reduce the stemness of A/Ec leukemia cells. Finally, it was confirmed in patient samples that the proportion of Tregs to leukemia stem cells (LSCs) was positively correlated, and in CD34+ primary AML cells, the activation of PI3K/AKT was stronger in patients with high Tregs' infiltration. After rhIL10 treatment, primary AML cells showed increased activation of PI3K/AKT signaling. Therefore, blocking the interaction between Tregs and AML cells may be a new approach to target LSCs in AML treatment.


Assuntos
Interleucina-10/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina-10/metabolismo , Linfócitos T Reguladores/imunologia , Diferenciação Celular , Proliferação de Células , Humanos , Interleucina-10/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Interleucina-10/genética , Transdução de Sinais , Células Tumorais Cultivadas , Microambiente Tumoral
8.
Sci Adv ; 7(36): eabi9787, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516916

RESUMO

Hematopoietic differentiation of human pluripotent stem cells (hPSCs) requires orchestration of dynamic cell and gene regulatory networks but often generates blood cells that lack natural function. Here, we performed extensive single-cell transcriptomic analyses to map fate choices and gene expression patterns during hematopoietic differentiation of hPSCs and showed that oxidative metabolism was dysregulated during in vitro directed differentiation. Applying hypoxic conditions at the stage of endothelial-to-hematopoietic transition in vitro effectively promoted the development of arterial specification programs that governed the generation of hematopoietic progenitor cells (HPCs) with functional T cell potential. Following engineered expression of the anti-CD19 chimeric antigen receptor, the T cells generated from arterial endothelium-primed HPCs inhibited tumor growth both in vitro and in vivo. Collectively, our study provides benchmark datasets as a resource to further understand the origins of human hematopoiesis and represents an advance in guiding in vitro generation of functional T cells for clinical applications.

9.
Blood Cancer J ; 11(8): 144, 2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34392305

RESUMO

Acute myeloid leukemia (AML) is a biologically and clinically heterogeneous disease with a dismal prognosis and limited treatment options. Chimeric antigen receptor (CAR) T cells have achieved unprecedented clinical responses in patients with B cell malignancies but a dismal consequences in AML. In our previous study, we found that interleukin-10 receptor (IL-10R) was overexpressed in most AML cells, and played an important role in promoting the stemness of leukemia cells. In this study, we developed a novel ligand-based CAR-T cell targeting IL-10R, which displayed striking cytotoxicity both in vitro and in vivo against AML cells. Except for monocytes, it had no significant adverse effects on the normal hematopoietic system, including CD34+ hematopoietic stem and progenitor cells (HSPCs). In addition, even though the incorporation of IL-10 in the CAR cassette led to phenotypes change, it had few adverse effects on the survival and biological activity of IL-10 CAR-T cells and did not cause excessive proliferation of leukemia cells. Therefore, we propose IL-10R is a novel promising therapeutic candidate for AML, and IL-10R targeted CAR-T therapy provides a new treatment strategy to improve the prognosis of AML.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Interleucina-10/antagonistas & inibidores , Animais , Proliferação de Células , Humanos , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/patologia , Camundongos , Prognóstico , Receptores de Interleucina-10/análise
10.
Cytotherapy ; 22(10): 552-562, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747298

RESUMO

BACKGROUND AIMS: Anti-CD19 chimeric antigen receptor (CAR)-modified T cells have shown dramatic cytotoxicity against B-cell malignancies. Currently, autologous T cells are conventionally used to manufacture CAR T cells. Low quality or insufficient quantity of autologous T cells may lead to failure of CAR T preparations. Moreover, CAR T preparation usually takes 1-2 weeks, which is too long for patients with rapid disease progression to successfully infuse CAR T cells. Thus, the development of a ready-to-use CAR immunotherapy strategy is needed. NK-92, a natural killer (NK) cell line derived from an NK lymphoma patient, has been gradually applied as a CAR-modified effector cell. To avoid the potential development of secondary NK lymphoma in patients, large doses of radiation are used to treat NK-92 cells before clinical application, which ensures the safety but reduces the cytotoxicity of NK-92 cells. Therefore, it is crucial to explore a suitable radiation dose that ensures short life span and good cytotoxicity of CAR NK-92 cells. METHODS: NK-92MI, a modified IL-2-independent NK-92 cell line, was used to establish an anti-CD19 CAR NK. The suitable radiation dose of CAR NK was then explored in vitro and validated in vivo, and the specific cytotoxicity of irradiated and unirradiated CAR NK against CD19+ malignant cells was assessed. RESULTS: CAR NK exhibited specific cytotoxicity against CD19+ malignant cells. Irradiation ensured a short life span of CAR NK in vitro and in vivo. Encouragingly, irradiated CAR NK displayed an anti-CD19+ malignancy capacity similar to that of unirradiated CAR NK. CONCLUSIONS: Five Gy is a suitable radiation dose to ensure the safety and effectiveness of CD19 CAR NK-92MI cells.


Assuntos
Antígenos CD19/metabolismo , Citotoxicidade Imunológica , Receptores de Antígenos Quiméricos/metabolismo , Adulto , Idoso , Animais , Linfócitos B/imunologia , Linfócitos B/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células , Citotoxicidade Imunológica/efeitos da radiação , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Feminino , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos da radiação , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA