Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Leukemia ; 32(2): 303-312, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28751770

RESUMO

Targeted therapies are frequently combined with standard cytotoxic drugs to enhance clinical response. Targeting the B-cell lymphoma 2 (BCL-2) family of proteins is an attractive option to combat chemoresistance in leukemia. Preclinical and clinical studies indicate modest single-agent activity with selective BCL-2 inhibitors (for example, venetoclax). We show that venetoclax synergizes with cytarabine and idarubicin to increase antileukemic efficacy in a TP53-dependent manner. Although TP53 deficiency impaired sensitivity to combined venetoclax and chemotherapy, higher-dose idarubicin was able to suppress MCL1 and induce cell death independently of TP53. Consistent with an MCL1-specific effect, cell death from high-dose idarubicin was dependent on pro-apoptotic Bak. Combining higher-dose idarubicin with venetoclax was able to partially overcome resistance in Bak-deficient cells. Using inducible vectors and venetoclax to differentially target anti-apoptotic BCL-2 family members, BCL-2 and MCL1 emerged as critical and complementary proteins regulating cell survival in acute myeloid leukemia. Dual targeting of BCL-2 and MCL1, but not either alone, prolonged survival of leukemia-bearing mice. In conclusion, our findings support the further investigation of venetoclax in combination with standard chemotherapy, including intensified doses of idarubicin. Venetoclax should also be investigated in combination with direct inhibitors of MCL1 as a chemotherapy-free approach in the future.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Sulfonamidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Idarubicina/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
2.
Cell Death Differ ; 21(10): 1600-12, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24902899

RESUMO

Both receptor-interacting protein kinase 1 (RIPK1) and RIPK3 can signal cell death following death receptor ligation. To study the requirements for RIPK-triggered cell death in the absence of death receptor signaling, we engineered inducible versions of RIPK1 and RIPK3 that can be activated by dimerization with the antibiotic coumermycin. In the absence of TNF or other death ligands, expression and dimerization of RIPK1 was sufficient to cause cell death by caspase- or RIPK3-dependent mechanisms. Dimerized RIPK3 induced cell death by an MLKL-dependent mechanism but, surprisingly, also induced death mediated by FADD, caspase 8 and RIPK1. Catalytically active RIPK3 kinase domains were essential for MLKL-dependent but not for caspase 8-dependent death. When RIPK1 or RIPK3 proteins were dimerized, the mode of cell death was determined by the availability of downstream molecules such as FADD, caspase 8 and MLKL. These observations imply that rather than a 'switch' operating between the two modes of cell death, the final mechanism depends on levels of the respective signaling and effector proteins.


Assuntos
Apoptose/genética , Multimerização Proteica/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Recombinantes/metabolismo , Aminocumarinas/metabolismo , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular , Proteína de Domínio de Morte Associada a Fas/metabolismo , Camundongos , Camundongos Knockout , Proteínas Quinases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
Cell Death Dis ; 5: e1086, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24577084

RESUMO

Necroptosis is a mechanism by which cells can kill themselves that does not require caspase activity or the presence of the pro-apoptotic Bcl-2 family members Bax or Bak. It has been reported that RIPK3 (receptor interacting protein kinase 3) activates MLKL (mixed lineage kinase domain-like) to cause cell death that requires dynamin-related protein 1 (Drp1), because survival was increased in cells depleted of Drp1 or treated with the Drp1 inhibitor mdivi-1. To analyze necroptosis in a system that does not require addition of tumor necrosis factor (TNF), we used a construct that allows RIPK3 to be induced in cells, and then dimerized via an E. coli gyrase domain fused to its carboxyl-terminus, using the dimeric gyrase binding antibiotic coumermycin. We have previously shown elsewhere that RIPK3 dimerized in this manner not only induces necroptosis but also apoptosis, which can be inhibited by the broad-spectrum caspase inhibitor Q-VD-OPh (QVD). In response to RIPK3 dimerization, wild-type mouse embryonic fibroblasts (MEFs) underwent cell death that was reduced but not completely blocked by QVD. In contrast, death upon dimerization of RIPK3 in Mlkl(-/-) MEFs was completely inhibited with QVD, confirming that MLKL is required for necroptosis. Similar to wild-type MEFs, most Drp1(-/-) MEFs died when RIPK3 was activated, even in the presence of QVD. Furthermore, overexpression of wild-type MLKL or dominant active mutants of MLKL (Q343A or S345E/S347E) caused death of wild-type and Drp1(-/-) MEFs that was not inhibited with QVD. These results indicate that necroptosis caused by RIPK3 requires MLKL but not Drp1.


Assuntos
Apoptose , Dinaminas/metabolismo , Fibroblastos/enzimologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Aminocumarinas/farmacologia , Animais , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Linhagem Celular , Dinaminas/deficiência , Dinaminas/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Camundongos , Camundongos Knockout , Mutação , Necrose , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Multimerização Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/farmacologia
4.
Cell Death Dis ; 4: e465, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23328672

RESUMO

Ligation of tumor necrosis factor receptor 1 (TNFR1) can cause cell death by caspase 8 or receptor-interacting protein kinase 1 (RIPK1)- and RIPK3-dependent mechanisms. It has been assumed that because RIPK1 bears a death domain (DD), but RIPK3 does not, RIPK1 is necessary for recruitment of RIPK3 into signaling and death-inducing complexes. To test this assumption, we expressed elevated levels of RIPK3 in murine embryonic fibroblasts (MEFs) from wild-type (WT) and gene-deleted mice, and exposed them to TNF. Neither treatment with TNF nor overexpression of RIPK3 alone caused MEFs to die, but when levels of RIPK3 were increased, addition of TNF killed WT, Ripk1(-/-), caspase 8(-/-), and Bax(-/-)/Bak(-/-) MEFs, even in the presence of the broad-spectrum caspase inhibitor Q-VD-OPh. In contrast, Tnfr1(-/-) and Tradd(-/-) MEFs did not die. These results show for the first time that in the absence of RIPK1, TNF can activate RIPK3 to induce cell death both by a caspase 8-dependent mechanism and by a separate Bax/Bak- and caspase-independent mechanism. RIPK1 is therefore not essential for TNF to activate RIPK3 to induce necroptosis nor for the formation of a functional ripoptosome/necrosome.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 8/genética , Caspase 8/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos , Necrose , Quinolinas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteína de Domínio de Morte Associada a Receptor de TNF/deficiência , Proteína de Domínio de Morte Associada a Receptor de TNF/genética , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
5.
Cell Death Differ ; 19(5): 808-15, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22095280

RESUMO

Binding of TNF to TNF receptor-1 can give a pro-survival signal through activation of p65/RelA NF-κB, but also signals cell death. To determine the roles of FLICE-inhibitory protein (FLIP) and caspase-8 in TNF-induced activation of NF-κB and apoptosis, we used mouse embryonic fibroblasts derived from FLIP and caspase-8 gene-deleted mice, and treated them with TNF and a smac-mimetic compound that causes degradation of cellular inhibitor of apoptosis proteins (cIAPs). In cells treated with smac mimetic, TNF and Fas Ligand caused wild-type and FLIP(-/-) MEFs to die, whereas caspase-8(-/-) MEFs survived, indicating that caspase-8 is necessary for death of MEFs triggered by these ligands when IAPs are degraded. By contrast, neither caspase-8 nor FLIP was required for TNF to activate p65/RelA NF-κB, because IκB was degraded, p65 translocated to the nucleus, and an NF-κB reporter gene activated normally in caspase-8(-/-) or FLIP(-/-) MEFs. Reconstitution of FLIP(-/-) MEFs with the FLIP isoforms FLIP-L, FLIP-R, or FLIP-p43 protected these cells from dying when treated with TNF or FasL, whether or not cIAPs were depleted. These results show that in MEFs, caspase-8 is necessary for TNF- and FasL-induced death, and FLIP is needed to prevent it, but neither caspase-8 nor FLIP is required for TNF to activate NF-κB.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Caspase 8/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Imunoprecipitação , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA