Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117911

RESUMO

Leveraging human cells as materials precursors is a promising approach for fabricating living materials with tissue-like functionalities and cellular programmability. Here we describe a set of cellular units with metabolically engineered glycoproteins that allow cells to tether together to function as macrotissue building blocks and bioeffectors. The generated human living materials, termed as Cellgels, can be rapidly assembled in a wide variety of programmable three-dimensional configurations with physiologically relevant cell densities (up to 108 cells per cm3), tunable mechanical properties and handleability. Cellgels inherit the ability of living cells to sense and respond to their environment, showing autonomous tissue-integrative behaviour, mechanical maturation, biological self-healing, biospecific adhesion and capacity to promote wound healing. These living features also enable the modular bottom-up assembly of multiscale constructs, which are reminiscent of human tissue interfaces with heterogeneous composition. This technology can potentially be extended to any human cell type, unlocking the possibility for fabricating living materials that harness the intrinsic biofunctionalities of biological systems.

2.
Adv Mater ; 36(27): e2313776, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38639337

RESUMO

Advancing biofabrication toward manufacturing living constructs with well-defined architectures and increasingly biologically relevant cell densities is highly desired to mimic the biofunctionality of native human tissues. The formulation of tissue-like, cell-dense inks for biofabrication remains, however, challenging at various levels of the bioprinting process. Promising advances have been made toward this goal, achieving relatively high cell densities that surpass those found in conventional platforms, pushing the current boundaries closer to achieving tissue-like cell densities. On this focus, herein the overarching challenges in the bioprocessing of cell-rich living inks into clinically grade engineered tissues are discussed, as well as the most recent advances in cell-rich living ink formulations and their processing technologies are highlighted. Additionally, an overview of the foreseen developments in the field is provided and critically discussed.


Assuntos
Bioimpressão , Tinta , Engenharia Tecidual , Humanos , Bioimpressão/métodos , Engenharia Tecidual/métodos , Animais , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA