Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(27): e2309924, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38263808

RESUMO

The emergence of ferroelectricity in two-dimensional (2D) metal oxides is a topic of significant technological interest; however, many 2D metal oxides lack intrinsic ferroelectric properties. Therefore, introducing asymmetry provides access to a broader range of 2D materials within the ferroelectric family. Here, the generation of asymmetry in 2D SnO by doping the material with Hf0.5Zr0.5O2 (HZO) is demonstrated. A liquid metal process as a doping strategy for the preparation of 2D HZO-doped SnO with robust ferroelectric characteristics is implemented. This technology takes advantage of the selective interface enrichment of molten Sn with HZO crystallites. Molecular dynamics simulations indicate a strong tendency of Hf and Zr atoms to migrate toward the surface of liquid metal and embed themselves within the growing oxide layer in the form of HZO. Thus, the liquid metal-based harvesting/doping technique is a feasible approach devised for producing novel 2D metal oxides with induced ferroelectric properties, represents a significant development for the prospects of random-access memories.

2.
ACS Appl Mater Interfaces ; 15(40): 47394-47404, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37755698

RESUMO

Liquid metal-electrolyte can offer electrochemically reducing interfaces for the self-deposition of low-dimensional nanomaterials. We show that implementing such interfaces from multiprecursors is a promising pathway for achieving nanostructured films with combinatory properties and functionalities. Here, we explored the liquid metal-driven interfacial growth of metal tellurides using eutectic gallium-indium (EGaIn) as the liquid metal and the cation pairs Ag+-HTeO2+ and Cu2+-HTeO2+ as the precursors. At the EGaIn-electrolyte interface, the precursors were reduced and self-deposited autogenously to form interconnected nanoparticle networks. The deposited materials consisted of metal telluride and tellurium with their relative abundance depending on the metal ion type (Ag+ and Cu2+) and the metal-to-tellurium ion ratios. When used as electrode modifiers, the synthesized materials increased the electroactive surface area of unmodified electrodes by over 10 times and demonstrated remarkable activity for model electrochemical reactions, including HexRu(III) responses and dopamine sensing. Our work reveals the promising potential of the liquid metal-templated deposition method for synthesizing complex material systems for electrochemical applications.

3.
J Mater Chem B ; 11(17): 3941-3950, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067358

RESUMO

Gallium (Ga) is a low melting point metal in the liquid state in the biological environment which presents a unique combination of fluidity, softness, and metallic electrical and thermal properties. In this work, liquid Ga is proposed as a biocompatible electrode material for cell culture by electro-stimulation since the cytotoxicity of Ga is generally considered low and some Ga compounds have been reported to exhibit anti-bacterial and anti-inflammatory activities. Complementarily, polydopamine (PDA) was coated on liquid Ga to increase the attachment capability of cells on the liquid Ga electrode and provide enhanced biocompatibility. The liquid Ga layer could be readily painted at room temperature on a solid inert substrate, followed by the formation of a nanoscale PDA coating layer resulting in a conformable and biocompatible composite electrode. The PDA layer was shown to coordinate with Ga3+, which is sourced from liquid Ga, providing electrical conductivity in the cell culture medium. The PDA-Ga3+ composite acted as a conductive substrate for advanced electro-stimulation for cell culture methods of representative animal fibroblasts. The cell proliferation was observed to increase by ∼143% as compared to a standard glass coverslip at a low potential of 0.1 V of direct coupling stimulation. This novel PDA-Ga3+ composite has potential applications in cell culture and regenerative medicine.


Assuntos
Gálio , Polímeros , Animais , Polímeros/farmacologia , Polímeros/química , Materiais Biocompatíveis/farmacologia , Gálio/farmacologia , Técnicas de Cultura de Células
4.
Small ; 19(4): e2204781, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36444515

RESUMO

Many different types of inorganic materials are processed into nano/microparticles for medical utilization. The impact of selected key characteristics of these particles, including size, shape, and surface chemistries, on biological systems, is frequently studied in clinical contexts. However, one of the most important basic characteristics of these particles, their density, is yet to be investigated. When the particles are designed for drug delivery, highly mobile macrophages are the major participants in cellular levels that process them in vivo. As such, it is essential to understand the impact of particles' densities on the mobility of macrophages. Here, inorganic particles with different densities are applied, and their interactions with macrophages studied. A set of these particles are incubated with the macrophages and the outcomes are explored by optical microscopy. This microscopic view provides the understanding of the mechanistic interactions between particles of different densities and macrophages to conclude that the particles' density can affect the migratory behaviors of macrophages: the higher the density of particles engulfed inside the macrophages, the less mobile the macrophages become. This work is a strong reminder that the density of particles cannot be neglected when they are designed to be utilized in biological applications.


Assuntos
Macrófagos , Humanos , Tamanho da Partícula , Macrófagos/ultraestrutura
5.
ACS Appl Mater Interfaces ; 14(45): 51519-51530, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36322105

RESUMO

Liquid metals can be surface activated to generate a controlled galvanic potential by immersing them in aqueous solutions. This creates energized liquid-liquid interfaces that can promote interfacial chemical reactions. Here we utilize this interfacial phenomenon of liquid metals to deposit thin films of tin-doped tellurium onto rigid and flexible substrates. This is accomplished by exposing liquid metals to a precursor solution of Sn2+ and HTeO2+ ions. The ability to paint liquid metals onto substrates enables us to fabricate supercapacitor electrodes of liquid metal films with an intimately connected surface layer of tin-doped tellurium. The tin-doped tellurium exhibits a pseudocapacitive behavior in 1.0 M Na2SO4 electrolyte and records a specific capacitance of 184.06 F·g-1 (5.74 mF·cm-2) at a scan rate of 10 mV·s-1. Flexible supercapacitor electrodes are also fabricated by painting liquid metals onto polypropylene sheets and subsequently depositing tin-doped tellurium thin films. These flexible electrodes show outstanding mechanical stability even when experiencing a complete 180° bend as well as exhibit high power and energy densities of 160 W·cm-3 and 31 mWh·cm-3, respectively. Overall, this study demonstrates the attractive features of liquid metals in creating energy storage devices and exemplifies their use as media for synthesizing electrochemically active materials.

6.
ACS Nano ; 16(6): 8891-8903, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35613428

RESUMO

Gallium (Ga) compounds, as the source of Ga ions (Ga3+), have been historically used as anti-inflammatories. Currently, the widely accepted mechanisms of the anti-inflammatory effects for Ga3+ are rationalized on the basis of their similarities to ferric ions (Fe3+), which permits Ga3+ to bind with Fe-binding proteins and subsequently disturbs the Fe homeostasis in the immune cells. Here in contrast to the classic views, our study presents the mechanisms of Ga as anti-inflammatory by delivering Ga nanodroplets (GNDs) into lipopolysaccharide-induced macrophages and exploring the processes. The GNDs show a selective inhibition of nitric oxide (NO) production without affecting the accumulation of pro-inflammatory mediators. This is explained by GNDs disrupting the synthesis of inducible NO synthase in the activated macrophages by upregulating the levels of eIF2α phosphorylation, without interfering with the Fe homeostasis. The Fe3+ transferrin receptor-independent endocytosis of GNDs by the cells prompts a fundamentally different mechanism as anti-inflammatories in comparison to that imparted by Ga3+. This study reveals the fundamental molecular basis of GND-macrophage interactions, which may provide additional avenues for the use of Ga for anti-inflammatory and future biomedical and pharmaceutical applications.


Assuntos
Gálio , Gálio/farmacologia , Transferrina/metabolismo , Ferro/metabolismo , Homeostase , Anti-Inflamatórios/farmacologia
7.
ACS Nano ; 16(6): 8684-8693, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35470662

RESUMO

Transforming natural resources to energy sources, such as converting CH4 to H2 and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH4 conversion regarding many of the current methods remains a critical bottleneck for their practical uptake. Here we report an approach based on gallium (Ga) liquid metal droplets, Ni(OH)2 cocatalysts, and mechanical energy input that offers low-temperature and scalable CH4 conversion into H2 and carbon. Mainly driven by the triboelectric voltage, originating from the joint contributions of the cocatalysts during agitation, CH4 is converted at the Ga and Ni(OH)2 interface through nanotribo-electrochemical reaction pathways. The efficiency of the system is enhanced when the reaction is performed at an increased pressure. The dehydrogenation of other nongaseous hydrocarbons using this approach is also demonstrated. This technology presents a possible low energy route for CH4 conversion without involving high temperature and harsh operating conditions.

8.
ACS Appl Mater Interfaces ; 13(44): 53181-53193, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34723471

RESUMO

Molybdenum dioxide (MoO2), considering its near-metallic conductivity and surface plasmonic properties, is a great material for electronics, energy storage devices and biosensing. Yet to this day, room-temperature synthesis of large area MoO2, which allows deposition on arbitrary substrates, has remained a challenge. Due to their reactive interfaces and specific solubility conditions, gallium-based liquid metal alloys offer unique opportunities for synthesizing materials that can meet these challenges. Herein, a substrate-independent liquid metal-based method for the room temperature deposition and patterning of MoO2 is presented. By introducing a molybdate precursor to the surrounding of a eutectic gallium-indium alloy droplet, a uniform layer of hydrated molybdenum oxide (H2MoO3) is formed at the interface. This layer is then exfoliated and transferred onto a desired substrate. Utilizing the transferred H2MoO3 layer, a laser-writing technique is developed which selectively transforms this H2MoO3 into crystalline MoO2 and produces electrically conductive MoO2 patterns at room temperature. The electrical conductivity and plasmonic properties of the MoO2 are analyzed and demonstrated. The presented metal oxide room-temperature deposition and patterning method can find many applications in optoelectronics, sensing, and energy industries.

9.
ACS Nano ; 15(10): 16839-16850, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34613693

RESUMO

Low melting point eutectic systems, such as the eutectic gallium-indium (EGaIn) alloy, offer great potential in the domain of nanometallurgy; however, many of their interfacial behaviors remain to be explored. Here, a compositional change of EGaIn nanoalloys triggered by polydopamine (PDA) coating is demonstrated. Incorporating PDA on the surface of EGaIn nanoalloys renders core-shell nanostructures that accompany Ga-In phase separation within the nanoalloys. The PDA shell keeps depleting the Ga3+ from the EGaIn nanoalloys when the synthesis proceeds, leading to a Ga3+-coordinated PDA coating and a smaller nanoalloy. During this process, the eutectic nanoalloys turn into non-eutectic systems that ultimately result in the solidification of In when Ga is fully depleted. The reaction of Ga3+-coordinated PDA-coated nanoalloys with nitrogen dioxide gas is presented as an example for demonstrating the functionality of such hybrid composites. The concept of phase-separating systems, with polymeric reservoirs, may lead to tailored materials and can be explored on a variety of post-transition metals.

10.
Adv Mater ; 33(43): e2104793, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34510605

RESUMO

The introduction of trace impurities within the doping processes of semiconductors is still a technological challenge for the electronics industries. By taking advantage of the selective enrichment of liquid metal interfaces, and harvesting the doped metal oxide semiconductor layers, the complexity of the process can be mitigated and a high degree of control over the outcomes can be achieved. Here, a mechanism of natural filtering for the preparation of doped 2D semiconducting sheets based on the different migration tendencies of metallic elements in the bulk competing for enriching the interfaces is proposed. As a model, liquid metal alloys with different weight ratios of Sn and Bi in the bulk are employed for harvesting Bi2 O3 -doped SnO nanosheets. In this model, Sn shows a much stronger tendency than Bi to occupy surface sites of the Bi-Sn alloys, even at the very high concentrations of Bi in the bulk. This provides the opportunity for creating SnO 2D sheets with tightly controlled Bi2 O3 dopants. By way of example, it is demonstrated how such nanosheets could be made selective to both reducing and oxidizing environmental gases. The process demonstrated here offers significant opportunities for future synthesis and fabrication processes in the electronics industries.

11.
ACS Appl Mater Interfaces ; 13(36): 43247-43257, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34459601

RESUMO

Liquid metals and alloys with high-aspect-ratio nanodimensional features are highly sought-after for emerging electronic applications. However, high surface tension, water-like fluidity, and the existence of self-limiting oxides confer specific peculiarities to their characteristics. Here, we introduce a high accuracy nanometric three-dimensional pulling and stretching method to fabricate liquid-metal-based nanotips from room- or near-room-temperature gallium-based alloys. The pulling rate and step size were controlled with a resolution of up to 10 nm and yielded different nanotip morphologies and lengths as a function of the base liquid metal alloy composition and the pulling parameters. The obtained nanotips presented high aspect ratios over lengths of a few microns and apexes between 10 and 100 nm. The liquid metal alloys were found confined within nanotips with about 10 nm apexes when vertically pulled at 100 nm/s. An amorphous gallium oxide skin was shown to cover the surface of the nanotips, while the liquid core was composed of the initial liquid metal alloys. The electrical contact established at the nanotips was characterized under dynamic conditions. The liquid metal nanotips showed an Ohmic resistance when a continuous liquid metal channel was formed, and a controllable semiconductor state corresponding to a heterojunction formed at the junction between the liquid metal phase and the gallium oxide semiconductor skin. The variable threshold voltages of the heterojunction were controlled via stretching of the nanotips with a 10 nm step resolution. The liquid metal nanotips were also used for establishing soft electronic junctions. This novel method of liquid metal nanotip fabrication with Ohmic and semiconducting behaviors will lead to exciting avenues for developing electronic and sensing devices.

12.
ACS Nano ; 14(10): 14070-14079, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32916049

RESUMO

Although it remains unexplored, the direct synthesis and expulsion of metals from alloys can offer many opportunities. Here, such a phenomenon is realized electrochemically by applying a polarizing voltage signal to liquid alloys. The signal induces an abrupt interfacial perturbation at the Ga-based liquid alloy surface and results in an unrestrained discharge of minority elements, such as Sn, In, and Zn, from the liquid alloy. We show that this can occur by either changing the surface tension or inducing a reversible redox reaction at the alloys' interface. The expelled metals exhibit nanosized and porous morphologies, and depending on the cell electrochemistry, these metals can be passivated with oxide layers or fully oxidized into distinct nanostructures. The proposed concept of metal expulsion from liquid alloys can be extended to a wide variety of molten metals for producing metallic and metallic compound nanostructures for advanced applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA