Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38797903

RESUMO

Current therapeutic approaches for Huntington's disease (HD) focus on symptomatic treatment. Therefore, the unavailability of efficient disease-modifying medicines is a significant challenge. Regarding the molecular etiology, targeting the mutant gene or advanced translational steps could be considered promising strategies. The evidence in gene therapy suggests various molecular techniques, including knocking down mHTT expression using antisense oligonucleotides and small interfering RNAs and gene editing with zinc finger proteins and CRISPR-Cas9-based techniques. Several post-transcriptional and post-translational modifications have also been proposed. However, the efficacy and long-term side effects of these modalities have yet to be verified. Currently, cell therapy can be employed in combination with conventional treatment and could be used for HD in which the structural and functional restoration of degenerated neurons can occur. Several animal models have been established recently to develop cell-based therapies using renewable cell sources such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stromal cells, and neural stem cells. These models face numerous challenges in translation into clinics. Nevertheless, investigations in Advanced Therapy Medicinal Products (ATMPs) open a promising window for HD research and their clinical application. In this study, the ATMPs entry pathway in HD management was highlighted, and their advantages and disadvantages were discussed.

2.
Curr Neuropharmacol ; 20(12): 2320-2345, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35105291

RESUMO

Treatment of Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is currently considered a challenging issue since it causes substantial disability, poor quality of life, and mortality. Despite remarkable progress in advanced conventional therapeutic interventions, the global burden of the disease has nearly doubled, prompting us to assess the riskeffectiveness of different treatment modalities. Each protocol could be considered as the best alternative treatment depending on the patient's situation. Prescription of levodopa, the most effective available medicine for this disorder, has been associated with many complications, i.e., multiple episodes of "off-time" and treatment resistance. Other medications, which are typically used in combination with levodopa, may have several adverse effects as well. As a result, the therapies that are more in line with human physiology and make the least interference with other pathways are worth investigating. On the other hand, remaining and persistent symptoms after therapy and the lack of effective response to the conventional approaches have raised expectations towards innovative alternative approaches, such as stem cell-based therapy. It is critical to not overlook the unexplored side effects of innovative approaches due to the limited number of research. In this review, we aimed to compare the efficacy and risk of advanced therapies with innovative cell-based and stemcell- based modalities in PD patients. This paper recapitulated the underlying factors/conditions, which could lead us to more practical and established therapeutic outcomes with more advantages and few complications. It could be an initial step to reconsider the therapeutic blueprint for patients with Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Levodopa/uso terapêutico , Antiparkinsonianos/uso terapêutico , Qualidade de Vida , Assistência Centrada no Paciente
3.
Cell Mol Neurobiol ; 42(4): 1105-1123, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33201416

RESUMO

Huntington disease (HD) is a progressive neurological disorder with dominant motor symptoms. It also has psychiatric manifestations, like anxiety and depression, that can emerge themselves before motor symptoms and impose a major burden on patients. Oxytocin (OXT) is a newly emerged treatment for disorders like autism and schizophrenia and recently is using to alleviate depression and anxiety. In the current study, we investigated the behavioral and molecular effects of OXT on the development of anxiety and depression in 3-nitropropionic acid (3-NP)-induced model of HD. Anxiety- and depression-like behaviors as well as the levels of oxytocin receptor (OXTR), metabotropic glutamate receptor (mGluR) 2, mGluR5, and glutathione (GSH) were measured in striatum, hippocampus, prefrontal cortex, and amygdala. Also, we questioned if sex had any modulatory effect. We found that 3-NP increased anxiety and depression compared to controls. It also reduced the levels of OXTR and mGluR2, increased mGluR5, and reduced GSH in studied brain regions. Pretreatment with OXT before the injection of 3-NP ameliorated anxiety and depression. Additionally, it protected the brain from developing low levels of OXTR, mGluR2, and GSH and high levels of mGluR5 in studied regions. The protective effects of OXT were similar between male and female animals. These data suggest that OXTR, mGluR2, mGluR5, and GSH may contribute to psychiatric manifestations of HD. In addition, pretreatment with OXT could prevent the mood changes in male and female rats.


Assuntos
Receptores de Glutamato Metabotrópico , Receptores de Ocitocina , Animais , Ansiedade/complicações , Ansiedade/tratamento farmacológico , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Feminino , Masculino , Ocitocina/farmacologia , Ratos
4.
Mol Biol Rep ; 48(3): 2071-2082, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33723690

RESUMO

Evidence has validated the prophylactic effects of exercising on different aspects of health. On the opposite side, immobilization may lead to various destructive effects causing neurodegeneration. Here, we investigated the association between exercising and mitochondrial quality for preventing the destructive effects of restraint stress in different rat brain regions. Twenty-four male Wistar rats, were randomized into four groups (n = 6), exercise, stress, exercise + stress, and control. The exercise procedure consisted of running on a rodent treadmill for 8 weeks, and rats in the stress group were immobilized for 6 h. Rats were then euthanized by decapitation and tricarboxylic acid (TCA) cycle enzyme activity, antioxidant levels, and mitochondrial biogenesis factors were assessed in the frontal, hippocampus, parietal and temporal regions using spectrophotometer and western blot technique. Based on our results, increased activity of TCA cycle enzymes in the exercised and exercise-stressed groups was detected, except for malate dehydrogenase which was decreased in exercise-stressed group, and fumarase that did not change. Furthermore, the level of antioxidant agents (superoxide dismutase and reduced glutathione), mitochondrial biogenesis factors (peroxisome proliferator-activated receptor gamma coactivator 1-alpha and mitochondrial transcription factor A), and dynamics markers (Mitofusin 2, dynamic related protein 1, PTEN induced putative kinase-1, and parkin) increased in both mentioned groups. Interestingly our results also revealed that the majority of the mitochondrial factors increased in the frontal and parietal lobes, which may be in relation with the location of motor and sensory areas. Exercise can be used as a prophylactic approach against bioenergetics and mitochondrial dysfunction.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético , Dinâmica Mitocondrial , Condicionamento Físico Animal , Restrição Física , Estresse Psicológico/metabolismo , Animais , Antioxidantes/metabolismo , Encéfalo/enzimologia , Encéfalo/patologia , Ciclo do Ácido Cítrico , Masculino , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA