Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Comput Biol Med ; 153: 106458, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599211

RESUMO

The interaction of multiple myeloma with bone marrow resident cells plays a key role in tumor progression and the development of drug resistance. The tumor cell response involves contact-mediated and paracrine interactions. The heterogeneity of myeloma cells and bone marrow cells makes it difficult to reproduce this environment in in-vitro experiments. The use of in-silico established tools can help to understand these complex problems. In this article, we present a computational model based on the finite element method to define the interactions of multiple myeloma cells with resident bone marrow cells. This model includes cell migration, which is controlled by stress-strain equilibrium, and cell processes such as proliferation, differentiation, and apoptosis. A series of computational experiments were performed to validate the proposed model. Cell proliferation by the growth factor IGF-1 is studied for different concentrations ranging from 0-10 ng/mL. Cell motility is studied for different concentrations of VEGF and fibronectin in the range of 0-100 ng/mL. Finally, cells were simulated under a combination of IGF-1 and VEGF stimuli whose concentrations are considered to be dependent on the cancer-associated fibroblasts in the extracellular matrix. Results show a good agreement with previous in-vitro results. Multiple myeloma growth and migration are shown to correlate linearly to the IGF-1 stimuli. These stimuli are coupled with the mechanical environment, which also improves cell growth. Moreover, cell migration depends on the fiber and VEGF concentration in the extracellular matrix. Finally, our computational model shows myeloma cells trigger mesenchymal stem cells to differentiate into cancer-associated fibroblasts, in a dose-dependent manner.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células da Medula Óssea/metabolismo , Simulação por Computador
2.
Biomech Model Mechanobiol ; 21(2): 455-469, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35067825

RESUMO

Evolution of mechanical and structural properties in the Ascending Thoracic Aorta (ATA) is the results of complex mechanobiological processes. In this work, we address some numerical challenges in order to elaborate computational models of these processes. For that, we extend the state of the art of homogenized constrained mixture (hCM) models. In these models, prestretches are assigned to the mixed constituents in order to ensure local mechanical equilibrium macroscopically, and to maintain a homeostatic level of tension in collagen fibers microscopically. Although the initial prestretches were assumed as homogeneous in idealized straight tubes, more elaborate prestretch distributions need to be considered for curved geometrical models such as patient-specific ATA. Therefore, we introduce prestretches having a three-dimensional gradient across the ATA geometry in the homeostatic reference state. We test different schemes with the objective to ensure stable growth and remodeling (G&R) simulations on patient-specific curved vessels. In these simulations, aneurysm progression is triggered by tissue changes in the constituents such as mass degradation of intramural elastin. The results show that the initial prestretches are not only critical for the stability of numerical simulations, but they also affect the G&R response. Eventually, we submit that initial conditions required for G&R simulations need to be identified regionally for ensuring realistic patient-specific predictions of aneurysm progression.


Assuntos
Aneurisma , Aorta , Biofísica , Humanos , Estresse Mecânico
3.
Int J Numer Method Biomed Eng ; 38(2): e3547, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34719114

RESUMO

Aneurysm shrinkage is clinically observed after successful endovascular aortic aneurysm repair (EVAR). However, global understanding of post-operative aneurysm evolutions remains weak. In this work, we propose to study these effects using numerical simulation. We set up a 3D finite-element model of post-EVAR vascular adaptation within an open-source finite-element code, which was initially developed for growth and remodeling (G&R). We modeled the endograft with a set of uniaxial prestrained springs that apply radial forces on the inner surface of the artery. Constitutive equations, momentum balance equations, and equations related to the mechanobiology of the artery were formulated based on the homogenized constrained mixture theory. We performed a sensitivity analysis by varying different selected parameters, namely oversizing and compliance of the stent-graft, gain parameters related to collagen G&R, and the residual pressure in the aneurysm sac. This permitted us to evaluate how each factor influences post-EVAR vascular adaptation. It was found that oversizing, compliance or gain parameters have a limited influence compared to that of the residual pressure in the aneurysm sac, which was found to play a critical role in the stability of aneurysm after stent-graft implantation. An excessive residual pressure larger than 50 mmHg can induce a continuous expansion of the aneurysm while a moderate residual pressure below this critical threshold yields continuous shrinkage of the aneurysm. Moreover, it was found that elderly patients, with relatively lower amounts of remnant elastin in the arterial wall, are more sensitive to the effect of residual pressure. Therefore, these results show that elderly patients may present a higher potential risk of aortic sac expansion due to intra-aneurysm sac pressure after EVAR than younger patients.


Assuntos
Aneurisma da Aorta Abdominal , Implante de Prótese Vascular , Procedimentos Endovasculares , Idoso , Aneurisma da Aorta Abdominal/etiologia , Aneurisma da Aorta Abdominal/cirurgia , Prótese Vascular/efeitos adversos , Humanos , Stents/efeitos adversos , Resultado do Tratamento
4.
Int J Numer Method Biomed Eng ; 37(3): e3427, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33301233

RESUMO

Computational modeling can provide insight into understanding the damage mechanisms of soft biological tissues. Our gradient-enhanced damage model presented in a previous publication has shown advantages in considering the internal length scales and in satisfying mesh independence for simulating damage, growth and remodeling processes. Performing sensitivity analyses for this model is an essential step towards applications involving uncertain patient-specific data. In this paper, a numerical analysis approach is developed. For that we integrate two existing methods, that is, the gradient-enhanced damage model and the surrogate model-based probability analysis. To increase the computational efficiency of the Monte Carlo method in uncertainty propagation for the nonlinear hyperelastic damage analysis, the surrogate model based on Legendre polynomial series is employed to replace the direct FEM solutions, and the sparse grid collocation method (SGCM) is adopted for setting the collocation points to further reduce the computational cost in training the surrogate model. The effectiveness of the proposed approach is illustrated by two numerical examples, including an application of artery dilatation mimicking to the clinical problem of balloon angioplasty.


Assuntos
Algoritmos , Humanos , Método de Monte Carlo , Incerteza
5.
Front Bioeng Biotechnol ; 8: 587376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224937

RESUMO

In this paper, we investigate the progression of Ascending Thoracic Aortic Aneurysms (ATAA) using a computational model of Growth and Remodeling (G&R) taking into account the composite (elastin, four collagen fiber families and Smooth Muscle Cells-SMCs) and multi-layered (media and adventitia) nature of the aorta. The G&R model, which is based on the homogenized Constrained Mixture theory, is implemented as a UMAT in the Abaqus finite-element package. Each component of the mixture is assigned a strain energy density function: nearly-incompressible neo-Hookean for elastin and Fung-type for collagen and SMCs. Active SMCs tension is additionally considered, through a length-tension relationship having a classic inverted parabola shape, in order to investigate its effects on the progression of ATAA in a patient-specific model. A sensitivity analysis is performed to evaluate the potential impact of variations in the parameters of the length-tension relationships. These variations reflect in variations of SMCs normal tone during ATAA progression, with active stress contributions ranging between 30% (best case scenario) and 0% (worst case scenario) of the total wall circumferential stress. Low SMCs active stress in the worst case scenarios, in fact, affect the rates of collagen deposition by which the elastin loss is gradually compensated by collagen deposition in the simulated ATAA progression, resulting eventually in larger aneurysm diameters. The types of length-tension relationships leading to a drop of SMCs active stress in our simulations reveal a critical condition which could also result in SMCs apoptosis.

6.
J R Soc Interface ; 17(162): 20190708, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31964269

RESUMO

Healing of soft biological tissues is the process of self-recovery or self-repair after injury or damage to the extracellular matrix (ECM). In this work, we assume that healing is a stress-driven process, which works at recovering a homeostatic stress metric in the tissue by replacing the damaged ECM with a new undamaged one. For that, a gradient-enhanced continuum healing model is developed for three-dimensional anisotropic tissues using the modified anisotropic Holzapfel-Gasser-Ogden constitutive model. An adaptive stress-driven approach is proposed for the deposition of new collagen fibres during healing with orientations assigned depending on the principal stress direction. The intrinsic length scales of soft tissues are considered through the gradient-enhanced term, and growth and remodelling are simulated by a constrained-mixture model with temporal homogenization. The proposed model is implemented in the finite-element package Abaqus by means of a user subroutine UEL. Three numerical examples have been achieved to illustrate the performance of the proposed model in simulating the healing process with various damage situations, converging towards stress homeostasis. The orientations of newly deposited collagen fibres and the sensitivity to intrinsic length scales are studied through these examples, showing that both have a significant impact on temporal evolutions of the stress distribution and on the size of the damage region. Applications of the approach to carry out in silico experiments of wound healing are promising and show good agreement with existing experiment results.


Assuntos
Modelos Biológicos , Cicatrização , Simulação por Computador , Análise de Elementos Finitos , Estresse Mecânico
7.
Biomech Model Mechanobiol ; 18(6): 1895-1913, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31201620

RESUMO

In its permanent quest of mechanobiological homeostasis, our vasculature significantly adapts across multiple length and timescales in various physiological and pathological conditions. Computational modeling of vascular growth and remodeling (G&R) has significantly improved our insights into the mechanobiological processes of diseases such as hypertension or aneurysms. However, patient-specific computational modeling of ascending thoracic aortic aneurysm (ATAA) evolution, based on finite element models (FEM), remains a challenging scientific problem with rare contributions, despite the major significance of this topic of research. Challenges are related to complex boundary conditions and geometries combined with layer-specific G&R responses. To address these challenges, in the current paper, we employed the constrained mixture model (CMM) to model the arterial wall as a mixture of different constituents such as elastin, collagen fiber families and smooth muscle cells. Implemented in Abaqus as a UMAT, this first patient-specific CMM-based FEM of G&R in human ATAA was first validated for canonical problems such as single-layer thick-wall cylindrical and bilayer thick-wall toric arterial geometries. Then it was used to predict ATAA evolution for a patient-specific aortic geometry, showing that the typical shape of an ATAA can be simply produced by elastin proteolysis localized in regions of deranged hemodymanics. The results indicate a transfer of stress to the adventitia by elastin loss and continuous adaptation of the stress distribution due to change in ATAA shape. Moreover, stress redistribution leads to collagen deposition where the maximum elastin mass is lost, which in turn leads to stiffening of the arterial wall. As future work, the predictions of this G&R framework will be validated on datasets of patient-specific ATAA geometries followed up over a significant number of years.


Assuntos
Aorta Torácica/patologia , Aneurisma da Aorta Torácica/patologia , Modelos Cardiovasculares , Fenômenos Biomecânicos , Colágeno/metabolismo , Elastina/metabolismo , Análise de Elementos Finitos , Humanos , Estresse Mecânico
8.
Biomech Model Mechanobiol ; 18(5): 1443-1460, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31037513

RESUMO

Healing of soft biological tissue is the process of self-recovering or self-repairing the injured or damaged extracellular matrix (ECM). Healing is assumed to be stress-driven, with the objective of returning to a homeostatic stress metrics in the tissue after replacing the damaged ECM with new undamaged one. However, based on the existence of intrinsic length scales in soft tissues, it is thought that computational models of healing should be non-local. In the present study, we introduce for the first time two gradient-enhanced constitutive healing models for soft tissues including non-local variables. The first model combines a continuum damage model with a temporally homogenized growth model, where the growth direction is determined according to local principal stress directions. The second one is based on a gradient-enhanced healing model with continuously recoverable damage variable. Both models are implemented in the finite-element package Abaqus by means of a user subroutine UEL. Three two-dimensional situations simulating the healing process of soft tissues are modeled numerically with both models, and their application for simulation of balloon angioplasty is provided by illustrating the change of damage field and geometry in the media layer throughout the healing process.


Assuntos
Modelos Biológicos , Cicatrização , Angioplastia com Balão , Elasticidade , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Resistência à Tração
9.
J Mech Behav Biomed Mater ; 95: 124-135, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30991171

RESUMO

The constrained mixture theory is an elegant way to incorporate the phenomenon of residual stresses in patient-specific finite element models of arteries. This theory assumes an in vivo reference geometry, obtained from medical imaging, and constituent-specific deposition stretches in the assumed reference state. It allows to model residual stresses and prestretches in arteries without the need for a stress-free reference configuration, most often unknown in patient-specific modeling. A finite element (FE) model requires material parameters, which are classically obtained by fitting the constitutive model to experimental data. The characterization of arterial tissue is often based on planar biaxial test data, to which nonlinear elastic fiber-reinforced material parameters are fitted. However, the introduction of the constrained mixture theory requires an adapted approach to parameter fitting. Therefore, we introduce an iterative fitting method, alternating between nonlinear least squares parameter optimization and an FE prestressing algorithm to obtain the correct constrained mixture material state during the mechanical test. We verify the method based on numerically constructed planar biaxial test data sets, containing ground truth sets of material parameters. The results show that the method converges to the correct parameter sets in just a few iterations. Next, the iterative fitting approach is applied to planar biaxial test data of ovine pulmonary artery tissue. The obtained results demonstrate a convergence towards constrained mixture compatible parameters, which differ significantly from classically obtained parameters. We show that this new modeling approach yields in vivo wall stresses similar to when using classically obtained parameters. However, due to the numerous advantages of constrained mixture modeling, our fitting method is relevant to obtain compatible material parameters, that may not be confused with parameters obtained in a classical way.


Assuntos
Análise de Elementos Finitos , Teste de Materiais , Fenômenos Mecânicos , Artérias , Estatística como Assunto
10.
Int J Numer Method Biomed Eng ; 34(4): e2944, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29171175

RESUMO

Dissections of ascending thoracic aortic aneurysms (ATAAs) cause significant morbidity and mortality worldwide. They occur when a tear in the intima-media of the aorta permits the penetration of the blood and the subsequent delamination and separation of the wall in 2 layers, forming a false channel. To predict computationally the risk of tear formation, stress analyses should be performed layer-specifically and they should consider internal or residual stresses that exist in the tissue. In the present paper, we propose a novel layer-specific damage model based on the constrained mixture theory, which intrinsically takes into account these internal stresses and can predict appropriately the tear formation. The model is implemented in finite-element commercial software Abaqus coupled with user material subroutine. Its capability is tested by applying it to the simulation of different exemplary situations, going from in vitro bulge inflation experiments on aortic samples to in vivo overpressurizing of patient-specific ATAAs. The simulations reveal that damage correctly starts from the intimal layer (luminal side) and propagates across the media as a tear but never hits the adventitia. This scenario is typically the first stage of development of an acute dissection, which is predicted for pressures of about 2.5 times the diastolic pressure by the model after calibrating the parameters against experimental data performed on collected ATAA samples. Further validations on a larger cohort of patients should hopefully confirm the potential of the model in predicting patient-specific damage evolution and possible risk of dissection during aneurysm growth for clinical applications.


Assuntos
Aorta Torácica/cirurgia , Aneurisma da Aorta Torácica/cirurgia , Simulação por Computador , Dissecação , Humanos , Pressão
11.
Biomech Model Mechanobiol ; 16(5): 1765-1777, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28536892

RESUMO

It is now a rather common approach to perform patient-specific stress analyses of arterial walls using finite-element models reconstructed from gated medical images. However, this requires to compute for every Gauss point the deformation gradient between the current configuration and a stress-free reference configuration. It is technically difficult to define such a reference configuration, and there is actually no guarantee that a stress-free configuration is physically attainable due to the presence of internal stresses in unloaded soft tissues. An alternative framework was proposed by Bellini et al. (Ann Biomed Eng 42(3):488-502, 2014). It consists of computing the deformation gradients between the current configuration and a prestressed reference configuration. We present here the first finite-element results based on this concept using the Abaqus software. The reference configuration is set arbitrarily to the in vivo average geometry of the artery, which is obtained from gated medical images and is assumed to be mechanobiologically homeostatic. For every Gauss point, the stress is split additively into the contributions of each individual load-bearing constituent of the tissue, namely elastin, collagen, smooth muscle cells. Each constituent is assigned an independent prestretch in the reference configuration, named the deposition stretch. The outstanding advantage of the present approach is that it simultaneously computes the in situ stresses existing in the reference configuration and predicts the residual stresses that occur after removing the different loadings applied onto the artery (pressure and axial load). As a proof of concept, we applied it on an ideal thick-wall cylinder and showed that the obtained results were consistent with corresponding experimental and analytical results of the well-known literature. In addition, we developed a patient-specific model of a human ascending thoracic aneurysmal aorta and demonstrated the utility in predicting the wall stress distribution in vivo under the effects of physiological pressure. Finally, we simulated the whole process preceding traditional in vitro uniaxial tensile testing of arteries, including excision from the body, radial cutting, flattening and subsequent tensile loading, showing how this process may impact the final mechanical properties derived from these in vitro tests.


Assuntos
Aorta Torácica/fisiopatologia , Análise de Elementos Finitos , Modelos Cardiovasculares , Estresse Mecânico , Algoritmos , Animais , Elastina/metabolismo , Humanos , Camundongos , Pressão , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA