Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Rep ; 43(10): 114793, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39356635

RESUMO

Transport through the nuclear pore complex (NPC) relies on intrinsically disordered FG-nucleoporins (FG-Nups) forming a selective barrier. Away from the NPC, FG-Nups readily form condensates and aggregates, and we address how this behavior is surveilled in cells. FG-Nups, including Nsp1, together with the nuclear transport receptor Kap95, form a native daughter cell-specific cytosolic condensate in yeast. In aged cells, this condensate disappears as cytosolic Nsp1 levels decline. Biochemical assays and modeling show that Nsp1 is a modulator of FG-Nup condensates, promoting a liquid-like state. Nsp1's presence in the cytosol and condensates is critical, as a reduction of cytosolic levels in young cells induces NPC defects and a general decline in protein quality control that quantitatively mimics aging phenotypes. These phenotypes can be rescued by a cytosolic form of Nsp1. We conclude that Nsp1 is a phase state regulator that surveils FG-Nups and impacts general protein homeostasis.

2.
Trends Biochem Sci ; 48(11): 949-962, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716870

RESUMO

Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.


Assuntos
Senescência Celular , Oxirredução
3.
Nucleus ; 14(1): 2240139, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37498221

RESUMO

Selective transport through the nuclear pore complex (NPC) depends on the dynamic binding of FG-repeat containing nucleoporins, the FG-nups, with each other and with Karyopherins (Kaps). Here, we assessed the specificity and mechanism by which the aliphatic alcohol 1,6-hexanediol (1,6HD) disrupts the permeability barrier of NPCs in live baker's yeast cells. After a 10-minute exposure to 5% 1,6HD, no notable changes were observed in cell growth, cytosolic pH and ATP levels, or the appearance of organelles. However, effects on the cytoskeleton and Hsp104 were noted. 1,6HD clearly affected the NPC permeability barrier, allowing passive nuclear entry of a 177kDa reporter protein that is normally confined to the cytosol. Moreover, multiple Kaps were displaced from NPCs, and the displacement of Kap122-GFP correlated with the observed passive permeability changes. 1,6HD thus temporarily permeates NPCs, and in line with Kap-centric models, the mechanism includes the release of numerous Kaps from the NPCs.


Assuntos
Carioferinas , Complexo de Proteínas Formadoras de Poros Nucleares , Transporte Ativo do Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Carioferinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Citoesqueleto/metabolismo , Poro Nuclear/metabolismo
4.
Cell Rep Methods ; 2(3): 100184, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35475219

RESUMO

Proteins assemble into a variety of dynamic and functional structures. Their structural transitions are often challenging to distinguish inside cells, particularly with a high spatiotemporal resolution. Here, we present a fluorescence resonance energy transfer (FRET)-based method for continuous and high-throughput monitoring of protein self-assemblies to reveal well-resolved transient intermediate states. Intermolecular FRET with both the donor and acceptor proteins at the same target protein provides high sensitivity while retaining the advantage of straightforward ratiometric imaging. We apply this method to monitor self-assembly of three proteins. We show that the mutant Huntingtin exon1 (mHttex1) first forms less-ordered assemblies, which develop into fibril-like aggregates, and demonstrate that the chaperone protein DNAJB6b increases the critical saturation concentration of mHttex1. We also monitor the structural changes in fused in sarcoma (FUS) condensates. This method adds to the toolbox for protein self-assembly structure and kinetics determination, and implementation with native or non-native proteins can inform studies involving protein condensation or aggregation.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/química
5.
Elife ; 92020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990592

RESUMO

Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the overall decline of homeostasis in aging is not known. Here, we show that the cytosol of yeast cells acidifies modestly in early aging and sharply after senescence. Using a macromolecular crowding sensor optimized for long-term FRET measurements, we show that crowding is rather stable and that the stability of crowding is a stronger predictor for lifespan than the absolute crowding levels. Additionally, in aged cells, we observe drastic changes in organellar volume, leading to crowding on the micrometer scale, which we term organellar crowding. Our measurements provide an initial framework of physicochemical parameters of replicatively aged yeast cells.


Assuntos
Saccharomyces cerevisiae/fisiologia , Senescência Celular , Concentração de Íons de Hidrogênio , Organelas , Densidade Demográfica , Análise de Célula Única
6.
Methods Mol Biol ; 2175: 169-180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32681490

RESUMO

Genetically encoded Förster resonance energy transfer (FRET)-based probes allow a sensitive readout for different or specific parameters in the living cell. We previously demonstrated how FRET-based probes could quantify macromolecular crowding with high spatio-temporal resolution and under various conditions. Here, we present a protocol developed for the use of FRET-based crowding probes in baker's yeast, but the general considerations also apply to other species, as well as other FRET-based sensors. This method allows straightforward detection of macromolecular crowding under challenging conditions often presented by living cells.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/metabolismo , Substâncias Macromoleculares/análise , Imagem Molecular/métodos , Proteínas Luminescentes/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA