Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioimpacts ; 14(2): 27618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505673

RESUMO

Introduction: Imidazo[1,2-a]pyridine derivatives with diverse pharmacological properties and curcumin, as a potential natural anti-inflammatory compound, are promising compounds for cancer treatment. This study aimed to synthesize a novel imidazo[1,2-a]pyridine derivative, (MIA), and evaluate its anti-inflammatory activity and effects on nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways, and their target genes, alone and in combination with curcumin, in MDA-MB-231 and SKOV3 cell lines. Methods: We evaluated the interaction between imidazo[1,2-a]pyridine ligand, curcumin, and NF-κB p50 protein, using molecular docking studies. MTT assay was used to investigate the impacts of compounds on cell viability. To evaluate the NF-κB DNA binding activity and the level of inflammatory cytokines in response to the compounds, ELISA-based methods were performed. In addition, quantitative polymerase chain reaction (qPCR) and western blotting were carried out to analyze the expression of genes and investigate NF-κB and STAT3 signaling pathways. Results: Molecular docking studies showed that MIA docked into the NF-κB p50 subunit, and curcumin augmented its binding. The MTT assay results indicated that MIA and its combination with curcumin reduced cell viability. According to the results of the ELISA-based methods, MIA lowered the levels of inflammatory cytokines and suppressed NF-κB activity. In addition, real-time PCR and Griess test results showed that the expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) genes, and nitrite production were reduced by MIA. Furthermore, the western blotting analysis demonstrated that MIA increased the expression of inhibitory κB (IκBα) and B-cell lymphoma 2 (Bcl-2)-associated X proteins (BAX), and suppressed the STAT3 phosphorylation, and Bcl-2 expression. Our findings revealed that curcumin had a potentiating role and enhanced all the anti-inflammatory effects of MIA. Conclusion: This study indicated that the anti-inflammatory activity of MIA is exerted by suppressing the NF-κB and STAT3 signaling pathways in MDA-MB-231 and SKOV3 cancer cell lines.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38275051

RESUMO

BACKGROUND: Cyclooxygenase-2 (COX-2), the key enzyme in the arachidonic acid conversion to prostaglandins, is one of the enzymes associated with different pathophysiological conditions, such as inflammation, cancers, Alzheimer's, and Parkinson's disease. Therefore, COX-2 inhibitors have emerged as potential therapeutic agents in these diseases. OBJECTIVE: The objective of this study was to design and synthesize novel imidazo[1,2-a]pyridine derivatives utilizing rational design methods with the specific aim of developing new potent COX-2 inhibitors. Additionally, we sought to investigate the biological activities of these compounds, focusing on their COX-2 inhibitory effects, analgesic activity, and antiplatelet potential. We aimed to contribute to the development of selective COX-2 inhibitors with enhanced therapeutic benefits. METHODS: Docking investigations were carried out using AutoDock Vina software to analyze the interaction of designed compounds. A total of 15 synthesized derivatives were obtained through a series of five reaction steps. The COX-2 inhibitory activities were assessed using the fluorescent Cayman kit, while analgesic effects were determined through writing tests, and Born's method was employed to evaluate antiplatelet activities. RESULTS: The findings indicated that the majority of the tested compounds exhibited significant and specific inhibitory effects on COX-2, with a selectivity index ranging from 51.3 to 897.1 and IC50 values of 0.13 to 0.05 µM. Among the studied compounds, derivatives 5e, 5f, and 5j demonstrated the highest potency with IC50 value of 0.05 µM, while compound 5i exhibited the highest selectivity with a selectivity index of 897.19. In vivo analgesic activity of the most potent COX-2 inhibitors revealed that 3-(4-chlorophenoxy)-2-[4-(methylsulfonyl) phenyl] imidazo[1,2-a]pyridine (5j) possessed the most notable analgesic activity with ED50 value of 12.38 mg/kg. Moreover, evaluating the antiplatelet activity showed compound 5a as the most potent for inhibiting arachidonic acidinduced platelet aggregation. In molecular modeling studies, methylsulfonyl pharmacophore was found to be inserted in the secondary pocket of the COX-2 active site, where it formed hydrogen bonds with Arg-513 and His-90. CONCLUSION: The majority of the compounds examined demonstrated selectivity and potency as inhibitors of COX-2. Furthermore, the analgesic effects observed of potent compounds can be attributed to the inhibition of the cyclooxygenase enzyme.

3.
Med Chem Res ; 32(5): 856-868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056461

RESUMO

Cyclooxygenase (COX), which plays a role in converting arachidonic acid to inflammatory mediators, could be inhibited by non-steroidal anti-inflammatory drugs (NSAIDs). Although potent NSAIDs are available for the treatment of pain, fever, and inflammation, some side effects, such as gastrointestinal ulcers, limit the use of these medications. In recent years, selective COX-2 inhibitors with a lower incidence of adverse effects attained an important position in medicinal chemistry. In order to introduce some new potent COX-2 inhibitors, a new series of 2-(4-(methylsulfonyl)phenyl)-N-phenylimidazo[1,2-a]pyridin-3-amines was designed, synthesized, and evaluated. The docking studies performed by AutoDock Vina demonstrated that docked molecules were positioned as well as a crystallographic ligand in the COX-2 active site, and SO2Me pharmacophore was inserted into the secondary pocket of COX-2 and formed hydrogen bonds with the active site. The designed compounds were synthesized through two-step reactions. In the first step, different 1-(4-(methylsulfonyl)phenyl)-2-(phenylamino)ethan-1-one derivatives were obtained by the reaction of aniline derivatives and α-bromo-4-(methylsulfonyl)acetophenone. Then, condensation of intermediates with different 2-aminopyridines gave final compounds. Enzyme inhibition assay and formalin test were performed to evaluate the activity of these compounds. Among these compounds, 8-methyl-2-(4-(methylsulfonyl)phenyl)-N-(p-tolyl)imidazo[1,2-a]pyridin-3-amine (5n) exhibited the highest potency (IC50 = 0.07 µM) and selectivity (selectivity index = 508.6) against COX-2 enzyme (selectivity index: COX-1 IC50/COX-2 IC50). The antinociceptive activity assessment via the formalin test showed that nine derivatives (5a, 5d, 5h, 5i, 5k, 5q, 5r, 5s, and 5t) possessed significant activity compared with the control group with a p value less than 0.05.

4.
Med Chem Res ; 32(3): 495-505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713891

RESUMO

The present study was aimed at the synthesis and evaluation of a new series of benzo[4,5]imidazo[1,2-a]pyrimidine having a methylsulfonyl group as COX-2 (cyclooxygenase-2) inhibitor pharmacophore. Molecular modeling studies were performed using the Autodock program, and the results demonstrated that methylsulfonyl pharmacophore was adequately placed into the COX-2 active site. The in vitro and in vivo COX-2 inhibitory effects were also evaluated. In the in vitro assay, all newly synthesized compounds showed moderate to good selectivity for the inhibition of the COX-2 enzyme. However, compound 2-(4-(methylsulfonyl) phenyl)-4-phenylbenzo[4,5]imidazo[1,2-a]pyrimidine (5a) showed the highest COX-2 inhibitory effect (IC50: 0.05 µM) even more than celecoxib as the reference drug (IC50: 0.06 µM). For the in vivo study, the writing reflex test was used, and the results indicated that all synthesized compounds had well dose-dependent anti-nociceptive activity. The in vivo evaluation also showed that compound 2-(4-(methylsulfonyl)phenyl)-4-(p-tolyl)benzo[4,5]imidazo[1,2-a]pyrimidine (5d) had the highest activity in the writing reflex test (ED50: 5.75 mg/kg). In addition, the cytotoxicity effects of the synthesized compounds were tested on MCF-7 breast cancer cells, and all compounds showed considerable inhibitory results.

5.
EXCLI J ; 21: 1306-1330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483916

RESUMO

Most studies aiming at unraveling the molecular events associated with cardiac congenital heart disease (CHD) have focused on the effect of mutations occurring in the nuclear genome. In recent years, a significant role has been attributed to mitochondria for correct heart development and maturation of cardiomyocytes. Moreover, numerous heart defects have been associated with nucleotide variations occurring in the mitochondrial genome, affecting mitochondrial functions and cardiac energy metabolism, including genes encoding for subunits of respiratory chain complexes. Therefore, mutations in the mitochondrial genome may be a major cause of heart disease, including CHD, and their identification and characterization can shed light on pathological mechanisms occurring during heart development. Here, we have analyzed mitochondrial genetic variants in previously reported mutational genome hotspots and the flanking regions of mt-ND1, mt-ND2, mt-COXI, mt-COXII, mt-ATPase8, mt-ATPase6, mt-COXIII, and mt-tRNAs (Ile, Gln, Met, Trp, Ala, Asn, Cys, Tyr, Ser, Asp, and Lys) encoding genes by polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) in 200 patients with CHD, undergoing cardiac surgery. A total of 23 mitochondrial variations (5 missense mutations, 8 synonymous variations, and 10 nucleotide changes in tRNA encoding genes) were identified and included 16 novel variants. Additionally, we showed that intracellular ATP was significantly reduced (P=0.002) in CHD patients compared with healthy controls, suggesting that the mutations have an impact on mitochondrial energy production. Functional and structural alterations caused by the mitochondrial nucleotide variations in the gene products were studied in-silico and predicted to convey a predisposing risk factor for CHD. Further studies are necessary to better understand the mechanisms by which the alterations identified in the present study contribute to the development of CHD in patients.

6.
J Biochem Mol Toxicol ; 36(10): e23155, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35791688

RESUMO

Magnesium, iron, and copper are three vital metals that play essential roles in cancer cell proliferation. This study aimed to evaluate the metal chelation of new derivatives of pyrazino[1,2-a]benzimidazole and investigate their antiproliferative properties. The density functional theory method has been employed to evaluate the complexation properties of new synthetic pyrazino[1,2-a]benzimidazole derivatives possessing the 4-OMe, 2,4-dimethyl, and 3,4,5-trimethoxy substitution on N-2 phenyl ring with divalent magnesium, iron, and copper. The free energies for the water-ligand exchange reactions were employed to investigate the thermodynamic stability, water exchange properties, and electronic properties in the gas phase. Natural population analysis was employed to estimate atomic partial charges, second-order interactions between the filled and vacant orbitals, and the occupancies of the metals' valence s, p, and d orbitals. Among pyrazino[1,2-a]benzimidazole derivatives, the 3,4,5-trimethoxy substituted pyrazino[1,2-a]benzimidazole shows better electron donor ability. This compound also reduced proliferation and increased the apoptosis of human glioblastoma cancer cells.


Assuntos
Cobre , Magnésio , Benzimidazóis/farmacologia , Cobre/farmacologia , Humanos , Íons , Ferro , Ligantes , Água
7.
Life Sci ; 302: 120505, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358594

RESUMO

AIMS: Recent studies show targeted therapy of new pyrazino[1,2-a]benzimidazole derivatives with COX-II inhibitory effects on different cancer cells. This study aimed to investigate 2D cell culture and 3D spheroid formation of glioblastoma multiforme (GBM) cells using a microfluidic device after exposure to these compounds. MAIN METHODS: After isolating astrocytes from human GBM samples, IC50 of 2,6-dimethyl pyrazino[1,2-a]benzimidazole (L1) and 3,4,5-trimethoxy pyrazino[1,2-a]benzimidazole (L2) were determined as 13 µM and 85 µM, respectively. Then, in all experiments, cells were exposed to subtoxic concentrations of L1 (6.5 µM) and L2 (42.5 µM), which were ½IC50. In the following, in two phases, cell cycle, migration, and gene expression through 2D cell culture and tumor spheroid formation ability using a 3D-printed microfluidic chip were assessed. KEY FINDINGS: The obtained results showed that both compounds have positive effects in reducing G2/M cell population and GBM cell migration. Furthermore, real-time gene expression data showed that L1 and L2 significantly impact the upregulation of P21 and P53 and down-regulation of cyclin D1, MMP2, and MMP9. On the other hand, GBM spheroids exposed to L1 and L2 become smaller with fewer live cells. SIGNIFICANCE: Our data on human isolated astrocyte cells in 2D and 3D cell culture conditions showed that L1 and L2 compounds could reduce GBM cells' invasion by controlling gene expressions associated with migration and proliferation. Moreover, designing microfluidic platform and related cell culture protocols facilitates the broad screening of 3D multicellular tumor spheroids derived from GBM tumor biopsies and provides effective drug development for brain gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Impressão Tridimensional , Dispositivos Lab-On-A-Chip , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico
8.
Mol Biol Rep ; 49(2): 1027-1036, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028851

RESUMO

BACKGROUND: FMSP is a synthesized ferrocene derivative with anti-cancer characteristics on tumor cells. Naringenin is a polyphenolic flavonoid with anti-tumor ability. METHODS: Cell viability and proliferation of two cancer cells and a normal cell line after treatment with these agents were determined with MTT assay. To predict the possible interaction between calmodulin (CaM) and FMSP and naringenin, docking studies were performed. By using fluorescence emission spectra, the effects of FMSP and naringenin on CaM structure and activity were studied. CaM-dependent activation of phosphodiesterase 1 (PDE1) by FMSP in relation to naringenin and their combination were compared. Effects of these compounds on PDE1 inhibition, cAMP accumulation, and cAMP-dependent protein kinase A (PKA) activation were assayed. RESULTS: The combination of FMSP and naringenin had more inhibitory effects on CaM structure than FMSP and naringenin alone. Results of docking analyses also confirmed efficient interaction of the two compounds with a hydrophobic pocket of calmodulin active site. Kinetic analyses of these agents' interaction with CaM showed FMSP and naringenin both competitively inhibited PDE1 activation without changing the Vmax parameter. FMSP and naringenin synergistically increased Km values at a higher level compared to FMSP or naringenin alone. The combination of these two agents also had more cytotoxic effects on cancer cells than FMSP alone. CONCLUSIONS: It was shown that mechanism of proliferation inhibition in both cancer cells by these compounds is based on CaM and consequent PDE inhibition followed by intracellular cAMP level elevation and increased PKA activity in a dose-dependent manner.


Assuntos
Calmodulina/metabolismo , Flavanonas/farmacologia , Animais , Antineoplásicos/farmacologia , Calmodulina/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Compostos Ferrosos/farmacologia , Flavonoides/farmacologia , Humanos , Metalocenos/farmacologia , Diester Fosfórico Hidrolases/metabolismo
9.
Life Sci ; 286: 120022, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626606

RESUMO

AIMS: Glioblastoma multiforme (GBM) is a highly devastating malignant brain tumor with poor pharmacotherapy. Based on COX-2 inhibitory effects in preventing cancer progression, new pyrazino[1,2-a]benzimidazole derivatives were assessed on isolated human GBM cells. MAIN METHODS: In this study, firstly, primary culture of astrocytes from human GBM samples was prepared and exposed to 2,6-dimethyl pyrazino[1,2-a]benzimidazole (L1) and 3,4,5-trimethoxy pyrazino[1,2-a]benzimidazole (L2) for finding their half-maximal inhibitory concentration (IC50). In the following, in two phases, cell apoptosis pathway and mitochondrial markers were investigated on GBM and also HEK293 cells (as non-cancerous normal cells). KEY FINDINGS: The MTT results represented a remarkable selective cytotoxic effect of both L1 and L2 on GBM cells, and interestingly not on normal cells. After 48 h, IC50 of L1 and L2 were calculated as 13 µM and 85 µM, respectively. Annexin/PI staining showed that L1 and L2 induce apoptosis in GBM cells, and caspase measurement showed that apoptosis occurs through mitochondrial signaling. In the clonogenic assay, GBM cells formed more paraclones and fewer holoclones after treating with L1 and L2. L1 and L2 also selectively enhanced mitochondrial damaged markers, including reactive oxygen species (ROS) formation, and mitochondrial swelling, decreased mitochondrial membrane potential (MMP) and cytochrome c release in isolated cancerous GBM mitochondria. SIGNIFICANCE: Our findings on human primary astrocyte cells illustrated that L1 and L2 compounds, with COX-2 inhibitory effect, through the intrinsic pathway of apoptosis concerning mitochondrial damage enhancement have therapeutic potentials on GBM.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Mitocôndrias/efeitos dos fármacos , Pirazinas/farmacologia , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Neoplasias Encefálicas/metabolismo , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Células HEK293 , Humanos , Análise Espectral/métodos , Células Tumorais Cultivadas
10.
Iran J Pharm Res ; 20(1): 408-417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34400969

RESUMO

Acquired immunodeficiency syndrome (AIDS) is still an incurable disease with increasing mortality rate. Despite the development of effective FDA-approved anti-HIV drugs, there are some problems due to the growing of resistant viral strands. Therefore, discovery of novel anti-HIV agents is so needed. Integrase, targeted in highly active antiretroviral therapy (HAART), is a crucial enzyme in viral replication. In this study, new benzimidazolyl diketo acid derivatives were designed according to required features for inhibitors of HIV-1 integrase. Designed compounds were synthesized and evaluated for anti-HIV-1 effects. According to the cell-based biological assay's results, most of the tested compounds demonstrated good anti-HIV-1 activity, ranging from 40-90 µM concentration with no severe cytotoxicity. The most potent compound was 13g with EC50 value of 40 µM and CC50 value of 550 µM. Docking analysis of compound 13g in integrase active site was in good agreement with well-known integrase inhibitors, proposing that anti-HIV-1 potency of compounds may be via integrase inhibition.

11.
Int Immunopharmacol ; 97: 107828, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34091116

RESUMO

In various pathological conditions, cellular immunity plays an important role in immune responses. Amongimmunecells, T lymphocytes pdomotecellular and humoralresponses as well as innate immunity. Therefore, careful investigation of these cells has a significant impact on accurate knowledge in COVID-19diseasepathogenesis. In current research, the frequency and function of various T lymphocytes involved in immune responses examined in SARS-CoV-2 patients with various disease severity compared to normal subjects. In order to make an accurate comparison among patients with various disease severity, this study was performed on asymptomatic recovered cases (n = 20), ICU hospitalized patients (n = 30), non-ICU hospitalized patients (n = 30), and normal subjects (n = 20). To precisely evaluate T cells activity following purification, their cytokine secretion activity was examined. Similarly, immediately after purification of Treg cells, their inhibitory activity on T cells was investigated. The results showed that COVID-19 patients with severe disease (ICU hospitalized patients) not only had a remarkable increase in Th1 and Th17 but also a considerable decrease in Th2 and Treg cells. More importantly, as the IL-17 and IFN-γ secretion was sharply increased in severe disease, the secretion of IL-10 and IL-4 was decreased. Furthermore, the inhibitory activity of Treg cells was reduced in severe disease patients in comparison to other groups. In severe COVID-19 disease, current findings indicate when the inflammatory arm of cellular immunity is significantly increased, a considerable reduction in anti-inflammatory and regulatory arm occurred.


Assuntos
COVID-19/sangue , COVID-19/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/virologia , Adulto , Idoso , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Imunidade Celular , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Adulto Jovem
12.
Cancer Invest ; 38(8-9): 463-475, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32772580

RESUMO

In the present study, we searched selective cytotoxicity and mitochondria mediated apoptosis of novel COX-2 inhibitor 2-(4-(Methylsulfonyl)phenyl)imidazo[1,2-a] pyridine-8-carboxylic acid on B-lymphocytes and their mitochondria isolated from normal subjects and acute lymphoblastic leukemia (ALL) patients' blood. Our results showed this compound can selectively induce cellular and mitochondrial toxicity on ALL B-lymphocytes and mitochondria without any toxic effects on normal B-lymphocytes and their mitochondria. Taken together, the results of this study suggest that cancerous mitochondria are a potential target for the ALL B-lymphocytes. Selective toxicity of COX-2 inhibitor in cancerous mitochondria could be an attractive therapeutic option for the effective clinical management of therapy-resistant ALL.


Assuntos
Linfócitos B/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Mitocôndrias/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos B/patologia , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Criança , Pré-Escolar , Citocromos c/metabolismo , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo
13.
Arch Pharm (Weinheim) ; 353(3): e1900293, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31917485

RESUMO

A new series of 1,4-diarylazetidin-2-one derivatives (ß-lactams) were designed and synthesized to evaluate their biological activities as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1 and COX-2 inhibition studies showed that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the 0.05-0.11 µM range, and COX-2 selectivity indexes in the range of 170-703.7. Among the synthesized ß-lactams, 3-methoxy-4-(4-(methylsulfonyl)phenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (4j) possessing trimethoxy groups at the N-1 phenyl ring exhibited the highest COX-2 inhibitory selectivity and potency, even more potent than the reference drug celecoxib. The analgesic activity of the synthesized compounds was also determined using the formalin test. Compound 4f displayed the best analgesic activity among the synthesized molecules. Molecular modeling studies indicated that the methylsulfonyl pharmacophore group can be inserted into the secondary pocket of the COX-2 active site for interactions with Arg513 . The structure-activity data acquired indicate that the ß-lactam ring moiety constitutes a suitable scaffold to design new 1,4-diarylazetidin-2-ones with selective COX-2 inhibitory activity.


Assuntos
Analgésicos/farmacologia , Azetidinas/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dor/tratamento farmacológico , beta-Lactamas/farmacologia , Analgésicos/síntese química , Analgésicos/química , Animais , Azetidinas/síntese química , Azetidinas/química , Gatos , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Modelos Moleculares , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , beta-Lactamas/síntese química , beta-Lactamas/química
14.
Arch Pharm (Weinheim) ; 352(2): e1800265, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30561073

RESUMO

A new class of pyrazino[1,2-a]benzimidazole derivatives possessing the SO2 Me pharmacophore at the para position of the C-3 phenyl ring was designed, synthesized, and tested for their cyclooxygenase-2 (COX-2) inhibitory, anti-cancer and anti-platelet aggregation activities. In vitro COX-1/COX-2 inhibition studies showed that 2-(4-methylphenyl)-1-methylene-3-(4-(methylsulfonyl)phenyl)-1,2-dihydropyrazino-[1,2-a]benzimidazole (5g) was the most potent COX-2 inhibitor (IC50 = 0.08 µM) and 2-(3,4,5-trimethoxyphenyl)-1-methylene-3-(4-(methylsulfonyl)phenyl)-1,2-dihydropyrazino-[1,2-a]benzimidazole (5m) had the highest selectivity index (SI > 909). Cytotoxicity of the synthesized compounds was also determined against the MCF-7 cell line. Most compounds were cytotoxic against MCF-7 cells and our results showed that compound 5m exhibited the highest anti-proliferative activity compared to the reference compound, cisplatin. Our data also indicated that compound 5k was the most potent platelet aggregation inhibitor according to aggregometry test results.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Pirazinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzimidazóis/síntese química , Benzimidazóis/química , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Feminino , Humanos , Células MCF-7 , Pirazinas/síntese química , Pirazinas/química , Relação Estrutura-Atividade
15.
Iran J Pharm Res ; 17(4): 1288-1296, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568687

RESUMO

A new series of imidazo[2,1-b]thiazole analogs containing a methyl sulfonyl COX-2 pharmacophore was synthesized and evaluated for their COX-2 inhibitory activity. According to in-vitro COX-1/COX-2 inhibition data, all compounds (6a-g) were selective inhibitors of COX-2 isoenzyme with IC50 values in the highly potent 0.08-0.16 µM range. These results indicated that both potency and selectivity of COX-2 inhibitory activity were affected by the type and size of amine on C-5 of imidazo[2,1-b]thiazole ring. Our data identified N,N-dimethyl-1-(6-(4-(methylsulfonyl)phenyl)imidazo[2,1-b]thiazol-5-yl)methanamine (6a) as a potent and selective COX-2 inhibitor (IC50 COX-1 >100 µM; IC50 COX-2 = 0.08 µM; selectivity index = 313.7). Our results indicated that both potency and selectivity of COX-2 inhibitory activity were affected by the type and size of amine on C-5 of imidazo[2,1-b]thiazole ring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA