Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(29): 7379-7386, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38995267

RESUMO

A theoretical description of biexcitons in metal halide perovskite nanoplatelets is presented. The description is based on a variational effective mass model, including polaronic effects by means of a Haken potential. The strong quantum and dielectric confinements are shown to squeeze the biexciton under the polaronic radius, which greatly enhances Coulomb attractions and (to a lesser extent) repulsions. This explains the need for effective dielectric constants approaching the high-frequency limit in previous simulations, and the binding energies exceeding 40 meV observed in single-monolayer nanoplatelets. Biexcitons are formed by a pair of weakly interacting excitons, with a roughly rectangular geometry. This translates into a constant ratio between biexciton and exciton binding energies (2D Haynes rule) well below the ideal value of ΔBX/ΔX = 0.228 proposed for squared biexcitons. The ratio is independent of the number of monolayers in the platelet, but it does depend on the lateral and dielectric confinement.

2.
3.
Nanoscale Adv ; 5(22): 6093-6101, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941960

RESUMO

A theoretical model for excitons confined in metal halide perovskite nanoplatelets is presented. The model accounts for quantum confinement, dielectric confinement, short and long range polaron interactions by means of effective mass theory, image charges and Haken potentials. We use it to describe the band edge exciton of MAPbI3 structures surrounded by organic ligands. It is shown that the quasi-2D quantum and dielectric confinement squeezes the exciton radius, and this in turn enhances short-range polaron effects as compared to 3D structures. Dielectric screening is then weaker than expected from the static dielectric constant. This boosts the binding energies and radiative recombination probabilities, which is a requisite to match experimental data in related systems. The thickness dependence of Coulomb polarization and self-energy potentials is in fair agreement with sophisticated atomistic models.

4.
Nano Lett ; 23(15): 7180-7187, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506366

RESUMO

Colloidal semiconductor nanomaterials present broadband, with large cross-section, two-photon absorption (2PA) spectra, which turn them into an important platform for applications that benefit from a high nonlinear optical response. Despite that, to date, the only means to control the magnitude of the 2PA cross-section is by changing the nanoparticle volume, as it follows a universal volume scale, independent of the material composition. As the emission spectrum is connected utterly to the nanomaterial dimensions, for a given material, the magnitude of the nonlinear optical response is also coupled to the emission spectra. Here, we demonstrate a means to decouple both effects by exploring the 2PA response of different types of heterostructures, tailoring the volume dependence of the 2PA cross-section due to the different dependence of the density of final states on the nanoparticle volume. By heterostructure engineering, one can obtain 1 order of magnitude enhancement of the 2PA cross-section with minimum emission spectra shift.

5.
J Phys Chem Lett ; 11(9): 3294-3300, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272016

RESUMO

We show theoretically that carriers confined in semiconductor colloidal nanoplatelets (NPLs) sense the presence of neighbor, cofacially stacked NPLs in their energy spectrum. When approaching identical NPLs, the otherwise degenerate energy levels red-shift and split, forming (for large stacks) minibands that are several millielectronvolts in width. Unlike in epitaxial structures, the molecular behavior does not result from quantum tunneling but from changes in the dielectric confinement. The associated excitonic absorption spectrum shows a rich structure of bright and dark states, whose optical activity and multiplicity can be understood from reflection symmetry and Coulomb tunneling. We predict spectroscopic signatures that should confirm the formation of molecular states, whose practical realization would pave the way for the development of nanocrystal chemistry based on NPLs.

6.
ACS Nano ; 7(3): 2443-52, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23442127

RESUMO

The spectral dependence of the two-photon absorption in CdSe/CdS core/shell nanocrystal heterorods has been studied via two-photon-induced luminescence excitation spectroscopy. We verified that the two-photon absorption in these samples is a purely nonlinear phenomenon, excluding the contribution from multistep linear absorption mediated by defect states. A large absorption cross section was observed for CdSe/CdS core/shell quantum rods, in the range of 10(5) GM (1 GM = 10(-50) cm(4) s phot(-1)), scaling with the total nanocrystal volume and thus independent of the core emission wavelength. In the two-photon luminescence excitation spectra, peaks are strongly blue-shifted with respect to the one-photon absorption peaks, for both core and shell transitions. The experimental results are confirmed by k·p calculations, which attribute the shift to both different parity selection rules that apply to one-photon and two-photon transitions and a low oscillator strength for two-photon transitions close to the ground-state one-photon absorption. In contrast with lead chalcogenide quantum dots, we found no evidence of a breakdown of the optical selection rules, despite the presence of band anisotropy, via the anisotropic hole masses, and the explicitly induced reduction of the electron wave function symmetry via the rod shape of the shell. The anisotropy does lead to an unexpected splitting of the electron P-states in the case of a large CdSe core encapsulated in a thin CdS shell. Hence, tuning of the core and shell dimensions and the concurrent transition from type I to quasi-type II carrier localization enables unprecedented control over the band-edge two-photon absorption.

7.
Small ; 8(5): 754-9, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22223514

RESUMO

Type II and quasi-type II nanocrystals with thick shells exhibit reduced blinking. However, after a number of monolayers, the influence of the shell thickness is found to vanish. Using a two-band Kane Hamiltonian, it is shown that this behavior is a consequence of interband coupling and asymmetric confinement of electrons and holes. Interface alloying provides an additional, order-of-magnitude contribution to the Auger suppression, in agreement with recent experiments. The existence is predicted of critical shell thicknesses that strongly quench Auger processes for any core size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA