Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Expert Opin Ther Targets ; 28(5): 437-459, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38828744

RESUMO

BACKGROUND: Hypertension worsens outcomes in SARS-CoV-2 patients. Sartans, a type of antihypertensive angiotensin receptor blocker-(ARB), reduce COVID-19 morbidity and mortality by targeting angiotensin-converting enzyme-2 (ACE2). This study aimed to evaluate the antiviral and antihypertensive effects of nirmatrelvir, commercial sartans (candesartan, losartan, and losartan carboxylic (Exp3174)), and newly synthesized sartans (benzimidazole-N-biphenyl carboxyl (ACC519C) and benzimidazole-N-biphenyl tetrazole (ACC519T)), compared to nirmatrelvir, the antiviral component of Paxlovid. RESEARCH DESIGN AND METHODS: Surface plasmon resonance (SPR) and enzymatic studies assessed drug effects on ACE2. Antiviral abilities were tested with SARS-CoV-2-infected Vero E6 cells, and antihypertensive effects were evaluated using angiotensin II-contracted rabbit iliac arteries. RESULTS: Benzimidazole-based candesartan and ACC519C showed antiviral activity comparable to nirmatrelvir (95% inhibition). Imidazole-based losartan, Exp3174, and ACC519T were less potent (75%-80% and 50%, respectively), with Exp3174 being the least effective. SPR analysis indicated high sartans-ACE2 binding affinity. Candesartan and nirmatrelvir combined had greater inhibitory and cytopathic effects (3.96%) than individually (6.10% and 5.08%). ACE2 enzymatic assays showed varying effects of novel sartans on ACE2. ACC519T significantly reduced angiotensin II-mediated contraction, unlike nirmatrelvir and ACC519T(2). CONCLUSION: This study reports the discovery of a new class of benzimidazole-based sartans that significantly inhibit SARS-CoV-2, likely due to their interaction with ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Benzimidazóis , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Benzimidazóis/farmacologia , Animais , Antivirais/farmacologia , Humanos , Chlorocebus aethiops , Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/efeitos dos fármacos , Células Vero , Coelhos , Antagonistas de Receptores de Angiotensina/farmacologia , Compostos de Bifenilo/farmacologia , Anti-Hipertensivos/farmacologia , Tetrazóis/farmacologia , Masculino , Hipertensão/tratamento farmacológico , COVID-19 , Losartan/farmacologia , Ressonância de Plasmônio de Superfície
2.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119602, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778471

RESUMO

The enzyme L-Dopa Decarboxylase (DDC) synthesizes the catecholamine dopamine and the indolamine serotonin. Apart from its role in the brain as a neurotransmitter biosynthetic enzyme, DDC has been detected also in the liver and other peripheral organs, where it is implicated in cell proliferation, apoptosis, and host-virus interactions. Dengue virus (DENV) suppresses DDC expression at the later stages of infection, during which DENV also inhibits autophagosome-lysosome fusion. As dopamine affects autophagy in neuronal cells, we investigated the possible association of DDC with autophagy in human hepatocytes and examined whether DDC mediates the relationship between DENV infection and autophagy. We performed DDC silencing/overexpression and evaluated autophagic markers upon induction of autophagy, or suppression of autophagosome-lysosome fusion. Our results showed that DDC favored the autophagic process, at least in part, through its biosynthetic function, while knockdown of DDC or inhibition of DDC enzymatic activity prevented autophagy completion. In turn, autophagy induction upregulated DDC, while autophagy reduction by chemical or genetic (ATG14L knockout) ways caused the opposite effect. This study also implicated DDC with the cellular energetic status, as DDC silencing reduced the oxidative phosphorylation activity of the cell. We also report that upon DDC silencing, the repressive effect of DENV on the completion of autophagy was enhanced, and the inhibition of autolysosome formation did not exert an additive effect on viral proliferation. These data unravel a novel role of DDC in the autophagic process and suggest that DENV downregulates DDC expression to inhibit the completion of autophagy, reinforcing the importance of this protein in viral infections.


Assuntos
Autofagia , Vírus da Dengue , Hepatócitos , Humanos , Vírus da Dengue/metabolismo , Dopa Descarboxilase/genética , Dopa Descarboxilase/metabolismo , Dopamina/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia
3.
Curr Issues Mol Biol ; 45(12): 10179-10192, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38132481

RESUMO

Oxidative stress is known to influence mRNA levels, translation, and proteolysis. The importance of oxidative stress has been demonstrated in several human diseases, including neurodegenerative disorders. L-Dopa decarboxylase (DDC) is the enzyme that converts L-Dopa to dopamine (DA). In spite of a large number of studies, little is known about the biological significance of the enzyme under physiological and pathological conditions. Here, we investigated the relationship between DDC expression and oxidative stress in human neural and non-neural cells. Oxidative stress was induced by treatment with H2O2. Our data indicated that mRNA and protein expression of DDC was enhanced or remained stable under conditions of ROS induction, despite degradation of total RNA and increased cytotoxicity and apoptosis. Moreover, DDC silencing caused an increase in the H2O2-induced cytotoxicity. The current study suggests that DDC is involved in the mechanisms of oxidative stress.

4.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513957

RESUMO

Flaviviridae infections, such as those caused by hepatitis C (HCV) and dengue viruses (DENVs), represent global health risks. Infected people are in danger of developing chronic liver failure or hemorrhagic fever, both of which can be fatal if not treated. The tropical parasites Trypanosoma brucei and Trypanosoma cruzi cause enormous socioeconomic burdens in Sub-Saharan Africa and Latin America. Anti-HCV chemotherapy has severe adverse effects and is expensive, whereas dengue has no clinically authorized treatment. Antiparasitic medicines are often toxic and difficult to administer, and treatment failures are widely reported. There is an urgent need for new chemotherapies. Based on our previous research, we have undertaken structural modification of lead compound V with the goal of producing derivatives with both antiviral and trypanocidal activity. The novel spirocarbocyclic-substituted hydantoin analogs were designed, synthesized, and tested for antiviral activity against three HCV genotypes (1b, 3a, 4a), DENV, yellow fever virus (YFV), and two trypanosome species (T. brucei, T. cruzi). The optimization was successful and led to compounds with significant antiviral and trypanocidal activity and exceptional selectivity. Several modifications were made to further investigate the structure-activity relationships (SARs) and confirm the critical role of lipophilicity and conformational degrees of freedom.

5.
Microorganisms ; 11(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985119

RESUMO

Background: Chronic media with effusion (COME) and recurrent acute otitis media (RAOM) are closely related clinical entities that affect childhood. The aims of the study were to investigate the microbiological profile of otitis-prone children in the post-PCV7 era and, to examine the biofilm-forming ability in association with clinical history and outcome during a two-year post-operative follow-up. Methods: In this prospective study, pathogens from patients with COME and RAOM were isolated and studied in vitro for their biofilm-forming ability. The minimum inhibitory concentrations (MIC) of both the planktonic and the sessile forms were compared. The outcome of the therapeutic method used in each case and patient history were correlated with the pathogens and their ability to form biofilms. Results: Haemophilus influenzae was the leading pathogen (35% in COME and 40% in RAOM), and Streptococcus pneumoniae ranked second (12% in COME and 24% in RAOM). Polymicrobial infections were identified in 5% of COME and 19% of RAOM cases. Of the isolated otopathogens, 94% were positive for biofilm formation. Conclusions: This is the first Greek research studying biofilm formation in complex otitis media-prone children population in the post-PCV7 era. High rates of polymicrobial infections, along with treatment failure in biofilms, may explain the lack of antimicrobial efficacy in otitis-prone children.

6.
Viruses ; 14(12)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36560772

RESUMO

Chronic hepatitis C virus (HCV) infections are a worldwide medical problem responsible for diverse types of liver diseases. The NS5B polymerase enzyme has become a very interesting target for the development of anti-HCV drugs owing to its fundamental role in viral replication. Here we report the synthesis of a novel series of 1-substituted phenyl-4(1H)-quinazolinone and 2-methyl-1-substituted phenyl-4(1H)-quinazolinone derivatives and evaluate their activity against HCV in HCV subgenomic replicon assays. The biological data revealed that compound 11a showed the highest activity against HCV GT1b at a micromolar concentration (EC50 = 0.984 µM) followed by compound 11b (EC50 = 1.38 µM). Both compounds 11a and 11b had high selectivity indices (SI = CC50/EC50), 160.71 and 71.75, respectively, which make them very interesting candidates for further development of more potent and selective anti-HCV agents.


Assuntos
Antivirais , Inibidores Enzimáticos , Hepacivirus , Humanos , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica , Quinazolinonas/farmacologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais , Replicação Viral
7.
Viruses ; 14(3)2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336971

RESUMO

Previously, the association between the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) and Dengue virus (DV) replication was demonstrated in liver cells and was found to be mediated at least by the interaction between DDC and phosphoinositide 3-kinase (PI3K). Here, we show that biogenic amines production and uptake impede DV replication in hepatocytes and monocytes, while the virus reduces catecholamine biosynthesis, metabolism, and transport. To examine how catecholamine biosynthesis/metabolism influences DV, first, we verified the role of DDC by altering DDC expression. DDC silencing enhanced virus replication, but not translation, attenuated the negative effect of DDC substrates on the virus and reduced the infection related cell death. Then, the role of the downstream steps of the catecholamine biosynthesis/metabolism was analyzed by chemical inhibition of the respective enzymes, application of their substrates and/or their products; moreover, reserpine, the inhibitor of the vesicular monoamine transporter 2 (VMAT2), was used to examine the role of uptake/storage of catecholamines on DV. Apart from the role of each enzyme/transporter, these studies revealed that the dopamine uptake, and not the dopamine-signaling, is responsible for the negative effect on DV. Accordingly, all treatments expected to enhance the accumulation of catecholamines in the cell cytosol suppressed DV replication. This was verified by the use of chemical inducers of catecholamine biosynthesis. Last, the cellular redox alterations due to catecholamine oxidation were not related with the inhibition of DV replication. In turn, DV apart from its negative impact on DDC, inhibits tyrosine hydroxylase, dopamine beta-hydroxylase, monoamine oxidase, and VMAT2 expression.


Assuntos
Dengue , Dopamina , Catecolaminas/metabolismo , Dopamina/metabolismo , Hepatócitos/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Replicação Viral
8.
Cells ; 12(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36611805

RESUMO

The SARS-CoV-2 infection was previously associated with the expression of the dopamine biosynthetic enzyme L-Dopa decarboxylase (DDC). Specifically, a negative correlation was detected between DDC mRNA and SARS-CoV-2 RNA levels in in vitro infected epithelial cells and the nasopharyngeal tissue of COVID-19 patients with mild/no symptoms. However, DDC, among other genes related to both DDC expression and SARS-CoV-2-infection (ACE2, dACE2, EPO), was upregulated in these patients, possibly attributed to an orchestrated host antiviral response. Herein, by comparing DDC expression in the nasopharyngeal swab samples of severe/critical to mild COVID-19 cases, we showed a 20 mean-fold reduction, highlighting the importance of the expression of this gene as a potential marker of COVID-19 severity. Moreover, we identified an association of SARS-CoV-2 infection with the expression of key catecholamine biosynthesis/metabolism-related genes, in whole blood samples from hospitalized patients and in cultured cells. Specifically, viral infection downregulated the biosynthetic part of the dopamine pathway (reduction in DDC expression up to 7.5 mean-fold), while enhanced the catabolizing part (increase in monoamine oxidases A and B expression up to 15 and 10 mean-fold, respectively) in vivo, irrespectively of the presence of comorbidities. In accordance, dopamine levels in the sera of severe cases were reduced (up to 3.8 mean-fold). Additionally, a moderate positive correlation between DDC and MAOA mRNA levels (r = 0.527, p < 00001) in the blood was identified upon SARS-CoV-2-infection. These observations were consistent to the gene expression data from SARS-CoV-2-infected Vero E6 and A549 epithelial cells. Furthermore, L-Dopa or dopamine treatment of infected cells attenuated the virus-derived cytopathic effect by 55% and 59%, respectively. The SARS-CoV-2 mediated suppression of dopamine biosynthesis in cell culture was, at least in part, attributed to hypoxia-like conditions triggered by viral infection. These findings suggest that L-Dopa/dopamine intake may have a preventive or therapeutic value for COVID-19 patients.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Catecolaminas , Dopamina , Levodopa/metabolismo , RNA Viral/metabolismo , Vias Biossintéticas , RNA Mensageiro/metabolismo
9.
Viruses ; 13(11)2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34834946

RESUMO

A bidirectional negative relationship between Hepatitis C virus (HCV) replication and gene expression of the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) was previously shown in the liver and attributed at least to an association of DDC with phosphatidylinositol 3-kinase (PI3K). Here, we report that the biosynthesis and uptake of catecholamines restrict HCV replication in hepatocytes, while HCV has developed ways to reduce catecholamine production. By employing gene silencing, chemical inhibition or induction of the catecholamine biosynthetic and metabolic enzymes and transporters, and by applying the substrates or the products of the respective enzymes, we unravel the role of the different steps of the pathway in viral infection. We also provide evidence that the effect of catecholamines on HCV is strongly related with oxidative stress that is generated by their autoxidation in the cytosol, while antioxidants or treatments that lower cytosolic catecholamine levels positively affect the virus. To counteract the effect of catecholamines, HCV, apart from the already reported effects on DDC, causes the down-regulation of tyrosine hydroxylase that encodes the rate-limiting enzyme of catecholamine biosynthesis and suppresses dopamine beta-hydroxylase mRNA and protein amounts, while increasing the catecholamine degradation enzyme monoamine oxidase. Moreover, the NS4B viral protein is implicated in the effect of HCV on the ratio of the ~50 kDa DDC monomer and a ~120 kDa DDC complex, while the NS5A protein has a negative effect on total DDC protein levels.


Assuntos
Vias Biossintéticas , Catecolaminas/biossíntese , Hepacivirus/fisiologia , Replicação Viral , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Linhagem Celular , Dopamina beta-Hidroxilase/metabolismo , Hepatite C/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Monoaminoxidase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576169

RESUMO

Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling phospholipid. Genetic and pharmacologic studies have previously established a pathologic role for ATX and LPA signaling in pulmonary injury, inflammation, and fibrosis. Here, increased ENPP2 mRNA levels were detected in immune cells from nasopharyngeal swab samples of COVID-19 patients, and increased ATX serum levels were found in severe COVID-19 patients. ATX serum levels correlated with the corresponding increased serum levels of IL-6 and endothelial damage biomarkers, suggesting an interplay of the ATX/LPA axis with hyperinflammation and the associated vascular dysfunction in COVID-19. Accordingly, dexamethasone (Dex) treatment of mechanically ventilated patients reduced ATX levels, as shown in two independent cohorts, indicating that the therapeutic benefits of Dex include the suppression of ATX. Moreover, large scale analysis of multiple single cell RNA sequencing datasets revealed the expression landscape of ENPP2 in COVID-19 and further suggested a role for ATX in the homeostasis of dendritic cells, which exhibit both numerical and functional deficits in COVID-19. Therefore, ATX has likely a multifunctional role in COVID-19 pathogenesis, suggesting that its pharmacological targeting might represent an additional therapeutic option, both during and after hospitalization.


Assuntos
COVID-19/diagnóstico , Células Dendríticas/imunologia , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/sangue , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/sangue , COVID-19/imunologia , COVID-19/terapia , Estudos de Coortes , Conjuntos de Dados como Assunto , Células Dendríticas/efeitos dos fármacos , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Feminino , Humanos , Interleucina-6/sangue , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , RNA-Seq , Respiração Artificial , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Análise de Célula Única
11.
PLoS One ; 16(6): e0253458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34185793

RESUMO

L-Dopa decarboxylase (DDC) is the most significantly co-expressed gene with ACE2, which encodes for the SARS-CoV-2 receptor angiotensin-converting enzyme 2 and the interferon-inducible truncated isoform dACE2. Our group previously showed the importance of DDC in viral infections. We hereby aimed to investigate DDC expression in COVID-19 patients and cultured SARS-CoV-2-infected cells, also in association with ACE2 and dACE2. We concurrently evaluated the expression of the viral infection- and interferon-stimulated gene ISG56 and the immune-modulatory, hypoxia-regulated gene EPO. Viral load and mRNA levels of DDC, ACE2, dACE2, ISG56 and EPO were quantified by RT-qPCR in nasopharyngeal swab samples from COVID-19 patients, showing no or mild symptoms, and from non-infected individuals. Samples from influenza-infected patients were analyzed in comparison. SARS-CoV-2-mediated effects in host gene expression were validated in cultured virus-permissive epithelial cells. We found substantially higher gene expression of DDC in COVID-19 patients (7.6-fold; p = 1.2e-13) but not in influenza-infected ones, compared to non-infected subjects. dACE2 was more elevated (2.9-fold; p = 1.02e-16) than ACE2 (1.7-fold; p = 0.0005) in SARS-CoV-2-infected individuals. ISG56 (2.5-fold; p = 3.01e-6) and EPO (2.6-fold; p = 2.1e-13) were also increased. Detected differences were not attributed to enrichment of specific cell populations in nasopharyngeal tissue. While SARS-CoV-2 virus load was positively associated with ACE2 expression (r≥0.8, p<0.001), it negatively correlated with DDC, dACE2 (r≤-0.7, p<0.001) and EPO (r≤-0.5, p<0.05). Moreover, a statistically significant correlation between DDC and dACE2 expression was observed in nasopharyngeal swab and whole blood samples of both COVID-19 and non-infected individuals (r≥0.7). In VeroE6 cells, SARS-CoV-2 negatively affected DDC, ACE2, dACE2 and EPO mRNA levels, and induced cell death, while ISG56 was enhanced at early hours post-infection. Thus, the regulation of DDC, dACE2 and EPO expression in the SARS-CoV-2-infected nasopharyngeal tissue is possibly related with an orchestrated antiviral response of the infected host as the virus suppresses these genes to favor its propagation.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , Dopa Descarboxilase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/genética , Área Sob a Curva , Descarboxilases de Aminoácido-L-Aromático , COVID-19/virologia , Dopa Descarboxilase/genética , Regulação para Baixo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Eritropoetina/genética , Eritropoetina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Curva ROC , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Regulação para Cima , Carga Viral
12.
Antibiotics (Basel) ; 8(3)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252510

RESUMO

During a six-month period (October 2017-March 2018), the prevalence and susceptibility of important pathogenic bacteria isolated from 12 hospital raw sewage samples in North Western Greece was investigated. The samples were analyzed for methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum beta-lactamase (ESBL) producing Escherichia coli, carbapenemase-producing Klebsiella pneumoniae (CKP), and multidrug-resistant Pseudomonas aeruginosa. Antimicrobial susceptibility testing was performed using the agar diffusion method according to the recommendations of the Clinical and Laboratory Standards Institute. The diversity of carbapenemases harboring K. pneumoniae was examined by two phenotyping screening methods (modified Hodge test and combined disk test), a new immunochromatographic rapid assay (RESIST-4 O.K.N.V.) and a polymerase chain reaction (PCR). The results demonstrated the prevalence of MRSA, vancomycin-resistant Staphylococcus aureus (VRSA), VRE, and CKP in the examined hospital raw sewage samples. In addition, the aforementioned methods which are currently used in clinical laboratories for the rapid identification and detection of resistant bacteria and genes, performed sufficiently to provide reliable results in terms of accuracy and efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA