Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cells ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891072

RESUMO

This study explores the impact of environmental pollutants on nuclear receptors (CAR, PXR, PPARα, PPARγ, FXR, and LXR) and their heterodimerization partner, the Retinoid X Receptor (RXR). Such interaction may contribute to the onset of non-alcoholic fatty liver disease (NAFLD), which is initially characterized by steatosis and potentially progresses to steatohepatitis and fibrosis. Epidemiological studies have linked NAFLD occurrence to the exposure to environmental contaminants like PFAS. This study aims to assess the simultaneous activation of nuclear receptors via perfluorooctanoic acid (PFOA) and RXR coactivation via Tributyltin (TBT), examining their combined effects on steatogenic mechanisms. Mice were exposed to PFOA (10 mg/kg/day), TBT (5 mg/kg/day) or a combination of them for three days. Mechanisms underlying hepatic steatosis were explored by measuring nuclear receptor target gene and lipid metabolism key gene expressions, by quantifying plasma lipids and hepatic damage markers. This study elucidated the involvement of the Liver X Receptor (LXR) in the combined effect on steatosis and highlighted the permissive nature of the LXR/RXR heterodimer. Antagonistic effects of TBT on the PFOA-induced activation of the Pregnane X Receptor (PXR) and Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) were also observed. Overall, this study revealed complex interactions between PFOA and TBT, shedding light on their combined impact on liver health.


Assuntos
Caprilatos , Fluorocarbonos , Compostos de Trialquitina , Animais , Compostos de Trialquitina/farmacologia , Caprilatos/farmacologia , Camundongos , Fluorocarbonos/toxicidade , Fluorocarbonos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Receptores X do Fígado/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Receptores X de Retinoides/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente
2.
J Ovarian Res ; 17(1): 134, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943138

RESUMO

BACKGROUND: Industrial progress has led to the omnipresence of chemicals in the environment of the general population, including reproductive-aged and pregnant women. The reproductive function of females is a well-known target of endocrine-disrupting chemicals. This function holds biological processes that are decisive for the fertility of women themselves and for the health of future generations. However, insufficient research has evaluated the risk of combined mixtures on this function. This study aimed to assess the direct impacts of a realistic exposure to eight combined environmental toxicants on the critical process of folliculogenesis. METHODS: Female rabbits were exposed daily and orally to either a mixture of eight environmental toxicants (F group) or the solvent mixture (NE group, control) from 2 to 19 weeks of age. The doses were computed from previous toxicokinetic data to reproduce steady-state serum concentrations in rabbits in the range of those encountered in pregnant women. Ovarian function was evaluated through macroscopic and histological analysis of the ovaries, serum hormonal assays and analysis of the expression of steroidogenic enzymes. Cellular dynamics in the ovary were further investigated with Ki67 staining and TUNEL assays. RESULTS: F rabbits grew similarly as NE rabbits but exhibited higher total and high-density lipoprotein (HDL) cholesterol levels in adulthood. They also presented a significantly elevated serum testosterone concentrations, while estradiol, progesterone, AMH and DHEA levels remained unaffected. The measurement of gonadotropins, androstenedione, pregnenolone and estrone levels yielded values below the limit of quantification. Among the 7 steroidogenic enzymes tested, an isolated higher expression of Cyp19a1 was measured in F rabbits ovaries. Those ovaries presented a significantly greater density/number of antral and atretic follicles and larger antral follicles without any changes in cellular proliferation or DNA fragmentation. No difference was found regarding the count of other follicle stages notably the primordial stage, the corpora lutea or AMH serum levels. CONCLUSION: Folliculogenesis and steroidogenesis seem to be subtly altered by exposure to a human-like mixture of environmental toxicants. The antral follicle growth appears promoted by the mixture of chemicals both in their number and size, potentially explaining the increase in atretic antral follicles. Reassuringly, the ovarian reserve estimated through primordial follicles number/density and AMH is spared from any alteration. The consequences of these changes on fertility and progeny health have yet to be investigated.


Assuntos
Folículo Ovariano , Reserva Ovariana , Feminino , Animais , Coelhos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Humanos , Reserva Ovariana/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Ovário/efeitos dos fármacos , Ovário/metabolismo , Exposição Ambiental/efeitos adversos
3.
Cells ; 12(18)2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37759441

RESUMO

Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common cause of chronic liver disease worldwide, affecting 70-90% of obese individuals. In humans, a lower NAFLD incidence is reported in pre-menopausal women, although the mechanisms affording this protection remain under-investigated. Here, we tested the hypothesis that the constitutive androstane nuclear receptor (CAR) plays a role in the pathogenesis of experimental NAFLD. Male and female wild-type (WT) and CAR knock-out (CAR-/-) mice were subjected to a high-fat diet (HFD) for 16 weeks. We examined the metabolic phenotype of mice through body weight follow-up, glucose tolerance tests, analysis of plasmatic metabolic markers, hepatic lipid accumulation, and hepatic transcriptome. Finally, we examined the potential impact of HFD and CAR deletion on specific brain regions, focusing on glial cells. HFD-induced weight gain and hepatic steatosis are more pronounced in WT males than females. CAR-/- females present a NASH-like hepatic transcriptomic signature suggesting a potential NAFLD to NASH transition. Transcriptomic correlation analysis highlighted a possible cross-talk between CAR and ERα receptors. The peripheral effects of CAR deletion in female mice were associated with astrogliosis in the hypothalamus. These findings prove that nuclear receptor CAR may be a potential mechanism entry-point and a therapeutic target for treating NAFLD/NASH.


Assuntos
Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Feminino , Masculino , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Dieta Hiperlipídica/efeitos adversos , Obesidade , Peso Corporal
4.
Cells ; 12(8)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37190111

RESUMO

The nuclear receptor, constitutive androstane receptor (CAR), which forms a heterodimer with the retinoid X receptor (RXR), was initially reported as a transcription factor that regulates hepatic genes involved in detoxication and energy metabolism. Different studies have shown that CAR activation results in metabolic disorders, including non-alcoholic fatty liver disease, by activating lipogenesis in the liver. Our objective was to determine whether synergistic activations of the CAR/RXR heterodimer could occur in vivo as described in vitro by other authors, and to assess the metabolic consequences. For this purpose, six pesticides, ligands of CAR, were selected, and Tri-butyl-tin (TBT) was used as an RXR agonist. In mice, CAR's synergic activation was induced by dieldrin associated with TBT, and combined effects were induced by propiconazole, bifenox, boscalid, and bupirimate. Moreover, a steatosis, characterized by increased triglycerides, was observed when TBT was combined with dieldrin, propiconazole, bifenox, boscalid, and bupirimate. Metabolic disruption appeared in the form of increased cholesterol and lowered free fatty acid plasma levels. An in-depth analysis revealed increased expression of genes involved in lipid synthesis and lipid import. These results contribute to the growing understanding of how environmental contaminants can influence nuclear receptor activity and associated health risks.


Assuntos
Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Praguicidas , Animais , Camundongos , Receptor Constitutivo de Androstano , Receptores X de Retinoides/metabolismo , Praguicidas/toxicidade , Dieldrin , Receptores Citoplasmáticos e Nucleares , Lipídeos
5.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457054

RESUMO

Metabolic diseases, such as obesity, Type II diabetes and hepatic steatosis, are a significant public health concern affecting more than half a billion people worldwide. The prevalence of these diseases is constantly increasing in developed countries, affecting all age groups. The pathogenesis of metabolic diseases is complex and multifactorial. Inducer factors can either be genetic or linked to a sedentary lifestyle and/or consumption of high-fat and sugar diets. In 2002, a new concept of "environmental obesogens" emerged, suggesting that environmental chemicals could play an active role in the etiology of obesity. Bisphenol A (BPA), a xenoestrogen widely used in the plastic food packaging industry has been shown to affect many physiological functions and has been linked to reproductive, endocrine and metabolic disorders and cancer. Therefore, the widespread use of BPA during the last 30 years could have contributed to the increased incidence of metabolic diseases. BPA was banned in baby bottles in Canada in 2008 and in all food-oriented packaging in France from 1 January 2015. Since the BPA ban, substitutes with a similar structure and properties have been used by industrials even though their toxic potential is unknown. Bisphenol S has mainly replaced BPA in consumer products as reflected by the almost ubiquitous human exposure to this contaminant. This review focuses on the metabolic effects and targets of BPA and recent data, which suggest comparable effects of the structural analogs used as substitutes.


Assuntos
Diabetes Mellitus Tipo 2 , Disruptores Endócrinos , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Humanos , Obesidade/induzido quimicamente , Fenóis
6.
Microbiome ; 9(1): 93, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879258

RESUMO

BACKGROUND: The gut microbiota-intestine-liver relationship is emerging as an important factor in multiple hepatic pathologies, but the hepatic sensors and effectors of microbial signals are not well defined. RESULTS: By comparing publicly available liver transcriptomics data from conventional vs. germ-free mice, we identified pregnane X receptor (PXR, NR1I2) transcriptional activity as strongly affected by the absence of gut microbes. Microbiota depletion using antibiotics in Pxr+/+ vs Pxr-/- C57BL/6J littermate mice followed by hepatic transcriptomics revealed that most microbiota-sensitive genes were PXR-dependent in the liver in males, but not in females. Pathway enrichment analysis suggested that microbiota-PXR interaction controlled fatty acid and xenobiotic metabolism. We confirmed that antibiotic treatment reduced liver triglyceride content and hampered xenobiotic metabolism in the liver from Pxr+/+ but not Pxr-/- male mice. CONCLUSIONS: These findings identify PXR as a hepatic effector of microbiota-derived signals that regulate the host's sexually dimorphic lipid and xenobiotic metabolisms in the liver. Thus, our results reveal a potential new mechanism for unexpected drug-drug or food-drug interactions. Video abstract.


Assuntos
Microbioma Gastrointestinal , Animais , Feminino , Microbioma Gastrointestinal/genética , Lipídeos , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Pregnano X/genética , Xenobióticos
7.
Cells ; 9(11)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171992

RESUMO

Xenobiotic nuclear receptors (NR) are intracellular players involved in an increasing number of physiological processes. Examined and characterized in peripheral organs where they govern metabolic, transport and detoxification mechanisms, accumulating data suggest a functional expression of specific NR at the neurovascular unit (NVU). Here, we focus on the Constitutive Androstane Receptor (CAR), expressed in detoxifying organs such as the liver, intestines and kidneys. By direct and indirect activation, CAR is implicated in hepatic detoxification of xenobiotics, environmental contaminants, and endogenous molecules (bilirubin, bile acids). Importantly, CAR participates in physiological stress adaptation responses, hormonal and energy homeostasis due to glucose and lipid sensing. We next analyze the emerging evidence supporting a role of CAR in NVU cells including the blood-brain barrier (BBB), a key vascular interface regulating communications between the brain and the periphery. We address the emerging concept of how CAR may regulate specific P450 cytochromes at the NVU and the associated relevance to brain diseases. A clear understanding of how CAR engages during pathological conditions could enable new mechanistic, and perhaps pharmacological, entry-points within a peripheral-brain axis.


Assuntos
Meio Ambiente , Sistema Nervoso/irrigação sanguínea , Receptores Citoplasmáticos e Nucleares/metabolismo , Estresse Fisiológico , Animais , Restrição Calórica , Receptor Constitutivo de Androstano , Humanos , Inativação Metabólica
8.
Neuroscience ; 446: 225-237, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736067

RESUMO

Exposure to environmental contaminants is a public health concern. However, pre-clinical studies that examine the impact of pesticides at low-dose and the long-term consequences are uncommon. Here, C57BL6/j male and female mice were daily fed from weaning and up to 12 months, corresponding to early-childhood into middle-age in humans, using chow pellets containing a cocktail of pesticides at tolerable daily intake levels. We found that 12 months of dietary exposure to pesticides was associated with a moderate perenchymal or perivascular astrogliosis in specific hippocampal sub-regions. The expression of platelet-derived growth factor receptor beta was modified at the perivascular level. Examination of Iba1+ microglial cells did not reveal sizeable changes. Concomitantly to astrogliosis, spontaneous spatial memory and sociability were modified in males at 12 months of dietary exposure to pesticides. Telemetry electrocorticograhic explorations ruled out the presence of epileptiform activity or theta-gamma wave modifications in these conditions. Long-term pesticides impacted the periphery where the hepatic P450 metabolic cytochromes Cyp4a14 and Cyp4a10 were significantly upregulated in male and female mice during the 12 months of exposure. The expression of ß-oxidation genes, such as Acox1, Cpt1a and Eci, was also significantly increased in male and female mice in response to pesticides. Collectively, our results indicate that a life-long exposure to a pesticide cocktail elicits sex-dependent, spatio-temporally restricted brain modifications and significant activation of P450 pathways in the periphery. These brain-peripheral adjustments are discussed as time or age-dependent vulnerability elements.


Assuntos
Praguicidas , Animais , Dieta , Feminino , Gliose , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Praguicidas/toxicidade
9.
Environ Int ; 144: 106010, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32745781

RESUMO

BACKGROUND: We recently demonstrated that chronic dietary exposure to a mixture of pesticides at low-doses induced sexually dimorphic obesogenic and diabetogenic effects in adult mice. Perinatal pesticide exposure may also be a factor in metabolic disease etiology. However, the long-term consequences of perinatal pesticide exposure remain controversial and largely unexplored. OBJECTIVES: Here we assessed how perinatal exposure to the same low-dose pesticide cocktail impacted metabolic homeostasis in adult mice. METHODS: Six pesticides (boscalid, captan, chlopyrifos, thiachloprid, thiophanate, and ziram) were incorporated in food pellets. During the gestation and lactation periods, female (F0) mice were fed either a pesticide-free or a pesticide-enriched diet at doses exposing them to the tolerable daily intake (TDI) level for each compound, using a 1:1 body weight scaling from humans to mice. All male and female offsprings (F1) were then fed the pesticide-free diet until 18 weeks of age, followed by challenge with a pesticide-free high-fat diet (HFD) for 6 weeks. Metabolic parameters, including body weight, food and water consumption, glucose tolerance, and urinary and fecal metabolomes, were assessed over time. At the end of the experiment, we evaluated energetic metabolism and microbiota activity using biochemical assays, gene expression profiling, and 1H NMR-based metabolomics in the liver, urine, and feces. RESULTS: Perinatal pesticide exposure did not affect body weight or energy homeostasis in 6- and 14-week-old mice. As expected, HFD increased body weight and induced metabolic disorders as compared to a low-fat diet. However, HFD-induced metabolic perturbations were similar between mice with and without perinatal pesticide exposure. Interestingly, perinatal pesticide exposure induced time-specific and sex-specific alterations in the urinary and fecal metabolomes of adult mice, suggesting long-lasting changes in gut microbiota. CONCLUSIONS: Perinatal pesticide exposure induced sustained sexually dimorphic perturbations of the urinary and fecal metabolic fingerprints, but did not significantly influence the development of HFD-induced metabolic diseases.


Assuntos
Microbioma Gastrointestinal , Praguicidas , Animais , Dieta Hiperlipídica/efeitos adversos , Fezes , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Praguicidas/toxicidade
11.
Sci Rep ; 9(1): 20169, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882815

RESUMO

Metabolic diseases such as obesity, type II diabetes and hepatic steatosis are a public health concern in developed countries. The metabolic risk is gender-dependent. The constitutive androstane receptor (CAR), which is at the crossroads between energy metabolism and endocrinology, has recently emerged as a promising therapeutic agent for the treatment of obesity and type 2 diabetes. In this study we sought to determine its role in the dimorphic regulation of energy homeostasis. We tracked male and female WT and CAR deficient (CAR-/-) mice for over a year. During aging, CAR-/- male mice developed hypercortisism, obesity, glucose intolerance, insulin insensitivity, dyslipidemia and hepatic steatosis. Remarkably, the latter modifications were absent, or minor, in female CAR-/- mice. When ovariectomized, CAR-/- female mice developed identical patterns of metabolic disorders as observed in male mice. These results highlight the importance of steroid hormones in the regulation of energy metabolism by CAR. They unveil a sexually dimorphic role of CAR in the maintenance of endocrine and metabolic homeostasis underscoring the importance of considering sex in treatment of metabolic diseases.

12.
Int J Mol Sci ; 20(15)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374856

RESUMO

The pregnane X receptor (PXR) is the main nuclear receptor regulating the expression of xenobiotic-metabolizing enzymes and is highly expressed in the liver and intestine. Recent studies have highlighted its additional role in lipid homeostasis, however, the mechanisms of these regulations are not fully elucidated. We investigated the transcriptomic signature of PXR activation in the liver of adult wild-type vs. Pxr-/- C57Bl6/J male mice treated with the rodent specific ligand pregnenolone 16α-carbonitrile (PCN). PXR activation increased liver triglyceride accumulation and significantly regulated the expression of 1215 genes, mostly xenobiotic-metabolizing enzymes. Among the down-regulated genes, we identified a strong peroxisome proliferator-activated receptor α (PPARα) signature. Comparison of this signature with a list of fasting-induced PPARα target genes confirmed that PXR activation decreased the expression of more than 25 PPARα target genes, among which was the hepatokine fibroblast growth factor 21 (Fgf21). PXR activation abolished plasmatic levels of FGF21. We provide a comprehensive signature of PXR activation in the liver and identify new PXR target genes that might be involved in the steatogenic effect of PXR. Moreover, we show that PXR activation down-regulates hepatic PPARα activity and FGF21 circulation, which could participate in the pleiotropic role of PXR in energy homeostasis.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , PPAR alfa/metabolismo , Receptor de Pregnano X/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/genética , Deleção de Genes , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Receptor de Pregnano X/genética , Ativação Transcricional , Transcriptoma
13.
Environ Health Perspect ; 126(6): 067007, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29950287

RESUMO

BACKGROUND: Epidemiological evidence suggests a link between pesticide exposure and the development of metabolic diseases. However, most experimental studies have evaluated the metabolic effects of pesticides using individual molecules, often at nonrelevant doses or in combination with other risk factors such as high-fat diets. OBJECTIVES: We aimed to evaluate, in mice, the metabolic consequences of chronic dietary exposure to a pesticide mixture at nontoxic doses, relevant to consumers' risk assessment. METHODS: A mixture of six pesticides commonly used in France, i.e., boscalid, captan, chlorpyrifos, thiofanate, thiacloprid, and ziram, was incorporated in a standard chow at doses exposing mice to the tolerable daily intake (TDI) of each pesticide. Wild-type (WT) and constitutive androstane receptor-deficient (CAR-/-) male and female mice were exposed for 52 wk. We assessed metabolic parameters [body weight (BW), food and water consumption, glucose tolerance, urinary metabolome] throughout the experiment. At the end of the experiment, we evaluated liver metabolism (histology, transcriptomics, metabolomics, lipidomics) and pesticide detoxification using liquid chromatography-mass spectrometry (LC-MS). RESULTS: Compared to those fed control chow, WT male mice fed pesticide chow had greater BW gain and more adiposity. Moreover, these WT males fed pesticide chow exhibited characteristics of hepatic steatosis and glucose intolerance, which were not observed in those fed control chow. WT exposed female mice exhibited fasting hyperglycemia, higher reduced glutathione (GSH):oxidized glutathione (GSSG) liver ratio and perturbations of gut microbiota-related urinary metabolites compared to WT mice fed control chow. When we performed these experiments on CAR-/- mice, pesticide-exposed CAR-/- males did not exhibit BW gain or changes in glucose metabolism compared to the CAR-/- males fed control chow. Moreover, CAR-/- females fed pesticide chow exhibited pesticide toxicity with higher BWs and mortality rate compared to the CAR-/- females fed control chow. CONCLUSIONS: To our knowledge, we are the first to demonstrate a sexually dimorphic obesogenic and diabetogenic effect of chronic dietary exposure to a common mixture of pesticides at TDI levels, and to provide evidence for a partial role for CAR in an in vivo mouse model. This raises questions about the relevance of TDI for individual pesticides when present in a mixture. https://doi.org/10.1289/EHP2877.


Assuntos
Fungicidas Industriais/toxicidade , Transtornos do Metabolismo de Glucose/induzido quimicamente , Inseticidas/toxicidade , Receptores Citoplasmáticos e Nucleares/genética , Animais , Animais Geneticamente Modificados , Peso Corporal/efeitos dos fármacos , Receptor Constitutivo de Androstano , Exposição Dietética , Fígado Gorduroso/induzido quimicamente , Feminino , Glutationa/metabolismo , Inativação Metabólica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais , Testes de Toxicidade Crônica
14.
PLoS One ; 12(7): e0181393, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28732092

RESUMO

Olive oil consumption is beneficial for health as it is associated with a decreased prevalence of cancer and cardiovascular diseases. Oleic acid is, by far, the most abundant component of olive oil. Since it can be made through de novo synthesis in animals, it is not an essential fatty acid. While it has become clear that dietary oleic acid regulates many biological processes, the signaling pathway involved in these regulations remains poorly defined. In this work we tested the impact of an oleic acid-rich diet on hepatic gene expression. We were particularly interested in addressing the contribution of Liver X Receptors (LXR) in the control of genes involved in hepatic lipogenesis, an essential process in whole body energy homeostasis. We used wild-type mice and transgenic mice deficient for both α and ß Liver X Receptor isoforms (LXR-/-) fed a control or an oleate enriched diet. We observed that hepatic-lipid accumulation was enhanced as well as the expression of lipogenic genes in the liver of wild-type mice fed the oleate enriched diet. In contrast, none of these changes occurred in the liver of LXR-/- mice. Strikingly, oleate-rich diet reduced cholesterolemia in wild-type mice and induced signs of liver inflammation and damage in LXR-/- mice but not in wild-type mice. This work suggests that dietary oleic acid reduces cholesterolemia while promoting LXR-dependent hepatic lipogenesis without detrimental effects to the liver.


Assuntos
Gorduras na Dieta/metabolismo , Lipogênese/fisiologia , Receptores X do Fígado/metabolismo , Fígado/metabolismo , Ácido Oleico/metabolismo , Azeite de Oliva/metabolismo , Ração Animal , Animais , Dieta , Perfilação da Expressão Gênica , Immunoblotting , Inflamação/metabolismo , Inflamação/patologia , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Receptores X do Fígado/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Isoformas de Proteínas
15.
Int J Mol Sci ; 17(10)2016 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-27669233

RESUMO

The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand.


Assuntos
Gorduras na Dieta , Fígado/metabolismo , PPAR alfa/genética , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Peso Corporal , Colesterol/sangue , Sistema Enzimático do Citocromo P-450/genética , Família 4 do Citocromo P450/genética , Jejum , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/genética , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/metabolismo , RNA Mensageiro/metabolismo , Triglicerídeos/sangue
16.
Exp Neurol ; 283(Pt A): 39-48, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27240521

RESUMO

Nuclear receptors (NRs) are a group of transcription factors emerging as players in normal and pathological CNS development. Clinically, an association between the constitutive androstane NR (CAR) and cognitive impairment was proposed, however never experimentally investigated. We wished to test the hypothesis that the impact of CAR on neurophysiology and behavior is underlined by cerebrovascular-neuronal modifications. We have used CAR(-/-) C57BL/6 and wild type mice and performed a battery of behavioral tests (recognition, memory, motor coordination, learning and anxiety) as well as longitudinal video-electroencephalographic recordings (EEG). Brain cell morphology was assessed using 2-photon or electron microscopy and fluorescent immunohistochemistry. We observed recognition memory impairment and increased anxiety-like behavior in CAR(-/-) mice, while locomotor activity was not affected. Concomitantly to memory deficits, EEG monitoring revealed a decrease in 3.5-7Hz waves during the awake/exploration and sleep periods. Behavioral and EEG abnormalities in CAR(-/-) mice mirrored structural changes, including tortuous fronto-parietal penetrating vessels. At the cellular level we found reduced ZO-1, but not CLDN5, tight junction protein expression in cortical and hippocampal isolated microvessel preparations. Interestingly, the neurotoxin kainic acid, when injected peripherally, provoked a rapid onset of generalized convulsions in CAR(-/-) as compared to WT mice, supporting the hypothesis of vascular permeability. The morphological phenotype of CAR(-/-) mice also included some modifications of GFAP/IBA1 glial cells in the parenchymal or adjacent to collagen-IV(+) or FITC(+) microvessels. Neuronal defects were also observed including increased cortical NEUN(+) cell density, hippocampal granule cell dispersion and increased NPY immunoreactivity in the CA1 region in CAR(-/-) mice. The latter may contribute to the in vivo phenotype. Our results indicate that behavioral and electroencephalographic changes in adult CAR(-/-) mice are concomitant to discrete developmental or structural brain defects. The latter could increase the vulnerability to neurotoxins. The possibility that interfering with nuclear receptors during development could contribute to adulthood brain changes is proposed.


Assuntos
Ansiedade/genética , Encéfalo/patologia , Transtornos da Memória/genética , Microvasos/patologia , Receptores Citoplasmáticos e Nucleares/deficiência , Animais , Benzazepinas/farmacologia , Encéfalo/ultraestrutura , Proteínas de Ligação ao Cálcio/metabolismo , Receptor Constitutivo de Androstano , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Ácido Caínico/farmacologia , Locomoção/genética , Masculino , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microvasos/fisiopatologia , Microvasos/ultraestrutura , Neuroglia/patologia , Neuroglia/ultraestrutura , Neurônios/patologia , Neurônios/ultraestrutura , Receptores Citoplasmáticos e Nucleares/genética , Reconhecimento Psicológico/fisiologia , Junções Íntimas/patologia , Junções Íntimas/ultraestrutura , Proteínas da Zônula de Oclusão/metabolismo
17.
Toxicol Appl Pharmacol ; 303: 90-100, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27180240

RESUMO

The Constitutive Androstane Receptor (CAR, NR1I3) has been newly described as a regulator of energy metabolism. A relevant number of studies using animal models of obesity suggest that CAR activation could be beneficial on the metabolic balance. However, this remains controversial and the underlying mechanisms are still unknown. This work aimed to investigate the effect of CAR activation on hepatic energy metabolism during physiological conditions, i.e. in mouse models not subjected to metabolic/nutritional stress. Gene expression profiling in the liver of CAR knockout and control mice on chow diet and treated with a CAR agonist highlighted CAR-mediated up-regulations of lipogenic genes, concomitant with neutral lipid accumulation. A strong CAR-mediated up-regulation of the patatin-like phospholipase domain-containing protein 3 (Pnpla3) was demonstrated. Pnpla3 is a gene whose polymorphism is associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) development. This observation was confirmed in human hepatocytes treated with the antiepileptic drug and CAR activator, phenobarbital and in immortalized human hepatocytes treated with CITCO. Studying the molecular mechanisms controlling Pnpla3 gene expression, we demonstrated that CAR does not act by a direct regulation of Pnpla3 transcription or via the Liver X Receptor but may rather involve the transcription factor Carbohydrate Responsive Element-binding protein. These data provide new insights into the regulation by CAR of glycolytic and lipogenic genes and on pathogenesis of steatosis. This also raises the question concerning the impact of drugs and environmental contaminants in lipid-associated metabolic diseases.


Assuntos
Fígado Gorduroso/metabolismo , Lipogênese , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Linhagem Celular , Células Cultivadas , Receptor Constitutivo de Androstano , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Lipase/genética , Lipase/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenobarbital/farmacologia , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Gut ; 65(7): 1202-14, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26838599

RESUMO

OBJECTIVE: Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor expressed in tissues with high oxidative activity that plays a central role in metabolism. In this work, we investigated the effect of hepatocyte PPARα on non-alcoholic fatty liver disease (NAFLD). DESIGN: We constructed a novel hepatocyte-specific PPARα knockout (Pparα(hep-/-)) mouse model. Using this novel model, we performed transcriptomic analysis following fenofibrate treatment. Next, we investigated which physiological challenges impact on PPARα. Moreover, we measured the contribution of hepatocytic PPARα activity to whole-body metabolism and fibroblast growth factor 21 production during fasting. Finally, we determined the influence of hepatocyte-specific PPARα deficiency in different models of steatosis and during ageing. RESULTS: Hepatocyte PPARα deletion impaired fatty acid catabolism, resulting in hepatic lipid accumulation during fasting and in two preclinical models of steatosis. Fasting mice showed acute PPARα-dependent hepatocyte activity during early night, with correspondingly increased circulating free fatty acids, which could be further stimulated by adipocyte lipolysis. Fasting led to mild hypoglycaemia and hypothermia in Pparα(hep-/-) mice when compared with Pparα(-/-) mice implying a role of PPARα activity in non-hepatic tissues. In agreement with this observation, Pparα(-/-) mice became overweight during ageing while Pparα(hep-/-) remained lean. However, like Pparα(-/-) mice, Pparα(hep-/-) fed a standard diet developed hepatic steatosis in ageing. CONCLUSIONS: Altogether, these findings underscore the potential of hepatocyte PPARα as a drug target for NAFLD.


Assuntos
Envelhecimento , Ácidos Graxos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Hepatócitos , Hepatopatia Gordurosa não Alcoólica/genética , PPAR alfa/genética , Adipócitos , Envelhecimento/fisiologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Família 4 do Citocromo P450/genética , Modelos Animais de Doenças , Jejum , Fenofibrato/farmacologia , Fatores de Crescimento de Fibroblastos/biossíntese , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Homeostase/genética , Hipoglicemia/genética , Hipolipemiantes/farmacologia , Hipotermia/genética , Metabolismo dos Lipídeos/genética , Lipólise/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sobrepeso/genética , PPAR alfa/metabolismo , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo
19.
Toxicology ; 325: 133-43, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25168180

RESUMO

Bisphenol A (BPA) is a suspected endocrine disruptor highly prevalent in our environment since it is used as monomer of polycarbonate plastics and epoxy resins. Recent epidemiological and animal studies have suggested that BPA exposure may influence the development of obesity and related pathologies such as type 2 diabetes, and cardiovascular diseases. However, experimental studies have often focused on short-term exposures. In this study, we investigated the effect of several months of BPA exposure on hepatic and plasma metabolic markers in adult mice. Male CD1 mice were exposed during 8 months to five different BPA doses below or equivalent to the current no observed adverse effect level (NOAEL: 5000 µg/kg/day) through drinking water. Plasma lipid profiles and liver transcriptomic analysis were performed in control and BPA-treated animals. We report a specific impact of BPA exposure on glycaemia, glucose tolerance and cholesterolemia. Consistent with the hypercholesterolemia in BPA-treated animals, RT-qPCR performed on hepatic mRNA from same animals demonstrated an overexpression of key genes involved in cholesterol biosynthesis, namely, Mvd, Lss Hmgcr, and Sqle. BPA also induced the expression of the sterol regulatory element-binding proteins 2, a master regulator of hepatic cholesterol biosynthesis. As shown by the plasma lathosterol to cholesterol ratio, a surrogate marker for cholesterol biosynthesis, whole body cholesterol de novo synthesis was also increased in BPA-exposed animals. These original results are consistent with many epidemiological studies reporting on a link between BPA exposure and the onset of cardiovascular diseases.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Hipercolesterolemia/induzido quimicamente , Hiperglicemia/induzido quimicamente , Fenóis/toxicidade , Fatores Etários , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Colesterol/sangue , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipercolesterolemia/sangue , Hipercolesterolemia/diagnóstico , Hiperglicemia/sangue , Hiperglicemia/diagnóstico , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Medição de Risco , Fatores de Tempo
20.
J Hepatol ; 58(5): 984-92, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23333450

RESUMO

BACKGROUND & AIMS: Nutrients influence non-alcoholic fatty liver disease. Essential fatty acids deficiency promotes various syndromes, including hepatic steatosis, through increased de novo lipogenesis. The mechanisms underlying such increased lipogenic response remain unidentified. METHODS: We used wild type mice and mice lacking Liver X Receptors to perform a nutrigenomic study that aimed at examining the role of these transcription factors. RESULTS: We showed that, in the absence of Liver X Receptors, essential fatty acids deficiency does not promote steatosis. Consistent with this, Liver X Receptors are required for the elevated expression of genes involved in lipogenesis in response to essential fatty acids deficiency. CONCLUSIONS: This work identifies, for the first time, the central role of Liver X Receptors in steatosis induced by essential fatty acids deficiency.


Assuntos
Ácidos Graxos Essenciais/deficiência , Fígado Gorduroso/fisiopatologia , Expressão Gênica/fisiologia , Lipogênese/genética , Lipogênese/fisiologia , Receptores Nucleares Órfãos/fisiologia , Animais , Colesterol/metabolismo , Deficiências Nutricionais/fisiopatologia , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Feminino , Expressão Gênica/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores Nucleares Órfãos/deficiência , Receptores Nucleares Órfãos/genética , Fatores de Transcrição/fisiologia , Triglicerídeos/metabolismo , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA