Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 10(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225015

RESUMO

: Ultraviolet-B (UV-B) radiation (280-320 nm) may induce photobiological stress in plants, activate the plant defense system, and induce changes of metabolites. In our previous work, we found that between the two Astragalus varieties prescribed by the Chinese Pharmacopoeia, Astragalus mongholicus has better tolerance to UV-B. Thus, it is necessary to study the metabolic strategy of Astragalus under UV-B radiation further. In the present study, we used untargeted gas chromatography-mass spectrometry (GC-MS) and targeted liquid chromatography-mass spectrometry (LC-MS techniques) to investigate the profiles of primary and secondary metabolic. The profiles revealed the metabolic response of Astragalus to UV-B radiation. We then used real-time polymerase chain reaction (RT-PCR) to obtain the transcription level of relevant genes under UV-B radiation (UV-B supplemented in the field, λmax = 313 nm, 30 W, lamp-leaf distance = 60 cm, 40 min·day-1), which annotated the responsive mechanism of phenolic metabolism in roots. Our results indicated that supplemental UV-B radiation induced a stronger shift from carbon assimilation to carbon accumulation. The flux through the phenylpropanoids pathway increased due to the mobilization of carbon reserves. The response of metabolism was observed to be significantly tissue-specific upon the UV-B radiation treatment. Among phenolic compounds, C6C1 carbon compounds (phenolic acids in leaves) and C6C3C6 carbon compounds (flavones in leaves and isoflavones in roots) increased at the expense of C6C3 carbon compounds. Verification experiments show that the response of phenolics in roots to UV-B is activated by upregulation of relevant genes rather than phenylalanine. Overall, this study reveals the tissues-specific alteration and mechanism of primary and secondary metabolic strategy in response to UV-B radiation.


Assuntos
Astragalus propinquus/metabolismo , Astragalus propinquus/efeitos da radiação , Fenóis/metabolismo , Astragalus propinquus/genética , Cromatografia Líquida , Flavonoides/genética , Flavonoides/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Hidroxibenzoatos/metabolismo , Espectrometria de Massas , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Medicinais , Metabolismo Secundário , Plântula/genética , Plântula/metabolismo , Plântula/efeitos da radiação , Raios Ultravioleta
2.
Molecules ; 23(8)2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127238

RESUMO

Acanthopanax senticosus (Rupr. Maxim.) Harms (ASH) and Acanthopanax sessiliflorus (Rupr. Maxim.) Seem (ASS), are members of the Araliaceae family, and both are used in Asian countries. These herbals have drawn much attention in recent years due to their strong biological activity, with innocuity and little side effects. However, the common and distinct mode of compound profiles between ASH and ASS is still unclear. In this study, a high performance liquid chromatograph-mass spectrometry (HPLC-MS) method was developed to simultaneously quantify the seven major active compounds, including protocatechuate, eleutheroside B, eleutheroside E, isofraxidin, hyperoside, kaempferol and oleanolic acid. Then the targeted metabolomics were conducted to identify 19 phenolic compounds, with tight relation to the above mentioned active compounds, including nine C6C3C6-type, six C6C3-type and four C6C1-type in the two Acanthopanax species studied here. The results showed that the seven active compounds presented a similar trend of changes in different tissues, with more abundant accumulation in roots and stems for both plants. From the view of plant species, the ASH plants possess higher abundance of compounds, especially in the tissues of roots and stems. For phenolics, the 19 phenols detected here could be clearly grouped into five main clusters based on their tissue-specific accumulation patterns. Roots are the tissue for the most abundance of their accumulations. C6C3C6-type compounds are the most widely existing type in both plants. In conclusion, the tissue- and species-specificity in accumulation of seven active compounds and phenolics were revealed in two Acanthopanax species.


Assuntos
Araliaceae/química , Hidroxibenzoatos/metabolismo , Metabolômica/métodos , Extratos Vegetais/análise , Benzopiranos/análise , Cromatografia Líquida de Alta Pressão , Hidroxibenzoatos/análise , Ácido Oleanólico/análise , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo , Especificidade da Espécie , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA