Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Med Chem ; 14(9): 1787-1802, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37731702

RESUMO

Serine/threonine protein kinase PLK4 is a master regulator of centriole duplication, which is significant for maintaining genome integrity. Accordingly, due to the detection of PLK4 overexpression in a variety of cancers, PLK4 has been identified as a candidate anticancer target. Thus, it is a very meaningful to find effective and safe PLK4 inhibitors for the treatment of cancer. However, the reported PLK4 inhibitors are scarce and have potential safety issues. In this study, a series of novel and potent PLK4 inhibitors with an aminopyrimidine core was obtained utilizing the scaffold hopping strategy. The in vitro enzyme activity results showed that compound 8h (PLK4 IC50 = 0.0067 µM) displayed high PLK4 inhibitory activity. In addition, compound 8h exhibited a good plasma stability (t1/2 > 289.1 min), liver microsomal stability (t1/2 > 145 min), and low risk of DDIs. At the cellular level, it presented excellent antiproliferative activity against breast cancer cells. Taken together, these results suggest that compound 8h has potential value in the further research of PLK4-targeted anticancer drugs.

2.
J Med Chem ; 66(12): 8200-8221, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37279162

RESUMO

Polo-like kinase 4 (PLK4) is a master regulator of centriole replication and has been proposed as a therapeutic target for multiple cancers, especially TRIM37-amplified breast cancer. The development of novel and effective therapeutic strategies for TRIM37-amplified breast cancer therapy is challenging and extremely desirable. Herein, a structure-activity relationship (SAR) study with an emphasis on exploring different linker lengths and compositions was performed to report the discovery and characterization of SP27 as the first selective PLK4 proteolysis targeting chimera (PROTAC) degrader. SP27 exhibited effective PLK4 degradation, more potent inhibition of cell growth, and more efficient precision-therapeutic effect in the TRIM37-amplified MCF-7 cell line than conventional inhibitor CZS-035. Moreover, SP27 showed 149% bioavailability after intraperitoneal administration in PK studies and potent antitumor efficacy in vivo. The discovery of SP27 demonstrated the practicality and importance of PLK4 PROTAC and paved the way for studying PLK4-dependent biological functions and treat TRIM37-amplified breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Quimera de Direcionamento de Proteólise , Linhagem Celular Tumoral , Células MCF-7 , Relação Estrutura-Atividade , Proteólise , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteínas Serina-Treonina Quinases
3.
J Med Chem ; 66(4): 2396-2421, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36734825

RESUMO

Recent studies demonstrate that PLK4 has emerged as a therapeutic target for the treatment of multiple cancers owing to its indispensable role in cell division. Herein, starting from previously identified effective compound CZS-034, based on rational drug design strategies, tyrosine kinase receptor A (TRKA) selectivity- and metabolic stability-guided structure-activity relationship (SAR) exploration were carried out to discover a highly potent (IC50 = 2.6 nM) and selective (SF = 1054.4 over TRKA) PLK4 inhibitor B43 (CZS-241) with acceptable human liver microsome stability (t1/2 = 31.5 min). Moreover, compound B43 effectively inhibited leukemia cells in 29 tested cell lines, especially chronic myeloid leukemia (CML) cell lines K562 and KU-812. Pharmacokinetic characteristics revealed that compound B43 possessed over 4 h of half-life and 70.8% bioavailability in mice. In the K562 cells xenograft mouse model, a 20 mg/kg/day dosage treatment obviously suppressed tumor progression. As a potential and novel PLK4-targeted candidate drug for CML, compound B43 is undergoing extensive preclinical safety evaluation.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Camundongos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células K562 , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA