Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(25): 17760-17768, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38873765

RESUMO

The Brust-Schiffrin two-phase method is a facile way to prepare thiolate-protected metal nanoparticles, but its mechanism remains controversial. In this work, we demonstrate the use of the Brust-Schiffrin method based on coordination compound theory. We confirmed that the formation of stable complexes is the driving force for a series chemical reaction in the organic phase. We found that the stable Cu(I)-thiolate complex decreased the half-cell reduction potential of Cu(I)/Cu(0). Thus, when thiol ligands were in excess, thiolate-protected Cu(I) clusters formed rather than Cu(0)-cored nanoparticles. The thiolate-protected metal-hydride nanoclusters were the intermediate between the metal complexes and nanoparticles. The "metallophilic" interactions of the d10 closed-shell electronic configuration of the metal coordination centers were proposed as the driving force for nanocluster and nanoparticle formation. To confirm this mechanism, we synthesized Au, Ag, and Cu monometallic nanoparticles and bi- and trimetallic nanoparticles. We found that although thiolate-protected Cu(I) nanoclusters are not easily reduced, they can combine with Au and/or Ag nanoclusters to form nanoparticles. The proposed mechanism is expected to provide deeper insight into the Brust-Schiffrin method and further extend its application to metals other than Au, Ag and Cu.

2.
Biosensors (Basel) ; 14(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392007

RESUMO

We report a three-dimensional (3D) SERS substrate consisting of a silver nanoparticle (AgNP) coating on the skeleton-fiber surfaces of a polytetrafluoroethylene (PTFE) membrane. Simple thermal evaporation was employed to deposit Ag onto the PTFE membrane to produce grape-shaped AgNPs. The 3D-distributed AgNPs exhibit not only strong localized surface plasmon resonance (LSPR) but also strong hydrophobic performance. High-density hotspots via silver nano-grape structures and nanogaps, the large 3D interaction volume, and the large total surface area, in combination with the hydrophobic enrichment of the specimen, facilitate high-sensitivity sensing performance of such a SERS substrate for the direct detection of low-concentration molecules in water. An enhancement factor of up to 1.97 × 1010 was achieved in the direct detection of R6G molecules in water with a concentration of 10-13 mol/L. The lowest detection limit of 100 ppt was reached in the detection of melamine in water. Such a SERS sensor may have potential applications in food-safety control, environmental water pollution monitoring, and biomedical analysis.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Análise Espectral Raman/métodos , Prata/química , Nanopartículas Metálicas/química , Água , Politetrafluoretileno
3.
Atten Percept Psychophys ; 86(2): 404-421, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169028

RESUMO

In rich visual environments, humans have to adjust their attentional control settings in various ways, depending on the task. Especially if the environment changes dynamically, it remains unclear how observers adapt to these changes. In two experiments (online and lab-based versions of the same task), we investigated how observers adapt their target choices while searching for color singletons among shape distractor contexts that changed over trials. The two equally colored targets had shapes that differed from each other and matched a varying number of distractors. Participants were free to select either target. The results show that participants adjusted target choices to the shape ratio of distractors: even though the task could be finished by focusing on color only, participants showed a tendency to choose targets matching with fewer distractors in shape. The time course of this adaptation showed that the regularities in the changing environment were taken into account. A Bayesian modeling approach was used to provide a fine-grained picture of how observers adapted their behavior to the changing shape ratio with three parameters: the strength of adaptation, its delay relative to the objective distractor shape ratio, and a general bias toward specific shapes. Overall, our findings highlight that systematic changes in shape, even when it is not a target-defining feature, influence how searchers adjust their attentional control settings. Furthermore, our comparison between lab-based and online assessments with this paradigm suggests that shape is a good choice as a feature dimension in adaptive choice online experiments.


Assuntos
Percepção de Cores , Desempenho Psicomotor , Humanos , Teorema de Bayes , Atenção , Tempo de Reação
4.
Analyst ; 148(13): 3087-3096, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37310360

RESUMO

This paper presents a novel approach for the fabrication of low cost Electrochemical-Surface Enhanced Raman Scattering (EC-SERS) sensing platforms. Laser Induced Graphene (LIG) electrodes were readily fabricated by direct laser writing of polyimide tapes and functionalized with silver nanoparticles (Ag NPs) to obtain hybrid Ag NPs - LIG electrodes suitable for EC-SERS analysis. Detection was achieved by coupling a handheld potentiostat with a Raman spectrograph, enabling measurement of SERS spectra of target analytes generated during voltage sweeps in the 0.0 to -1.0 V interval range. The sensing capabilities of the fabricated system were first tested with model molecule 4-aminobenzenethiol (4-ABT). Following sensitive detection of 4-ABT, EC-SERS analysis of food contaminant melamine in milk and antibiotic difloxacin hydrochloride (DIF) in river water was demonstrated, achieving sensitive detection of both analytes without pre-treatment steps. The easiness of fabrication, versatility of design, rapid analysis time and potential miniaturization of the system make Ag NPs - LIG electrodes suitable for a large range of in situ applications in the field of food monitoring and for environmental analysis.

5.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014713

RESUMO

We report the direct laser writing (DLW) of surface-enhanced Raman scattering (SERS) structures on the inner wall of a hollow fiber. Colloidal gold-silver alloy nanoparticles (Au-Ag ANPs) are firstly coated onto the inner wall of a hollow fiber. A green laser beam is focused through the outer surface of the hollow fiber to interact with colloidal Au-Ag ANPs so that they become melted and aggregated on the surface of the inner wall with strong adhesion. Such randomly distributed plasmonic nanostructures with high density and small gaps favor the SERS detection of low-concentration molecules in liquids flowing through the hollow fiber. Such a SERS device also supplies a three-dimensional microcavity for the interaction between excitation laser and the target molecules. The DLW system consists mainly of the flexible connection between the motor shaft and the hollow fiber, the program-controlled translation of the hollow fiber along its symmetric axis and rotation about the axis, as well as the mechanical design and the computer control system. This DLW technique enables high production, high stability, high reproducibility, high precision, and a high-flexibility fabrication of the hollow fiber SERS device. The resultant microcavity SERS scheme enables the high-sensitivity detection of R6G molecules in ethanol with a concentration of 10-7 mol/L.

6.
Biosensors (Basel) ; 13(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36671838

RESUMO

Organic molecules, including the benzene series, have been identified as pollutants in environmental water. Due to their very low solubility, they have very small concentrations in water, and they are difficult to be detected by conventional techniques. In particular, there is a lack of real-time, accurate, and rapid detection methods for such molecules in water. However, they are detrimental to human health in many aspects. Toluene has been an important indicator of such environmental pollution detections. In this work, we propose a 3D SERS scheme consisting of a hollow fiber that is coated on the inner wall with densely arranged silver nanoparticles, which supplies multifold Raman enhancement by the plasmonic microcavity. Strong confinement of excitation laser energy and strongly enhanced Raman signals with the bidirectional collection are utilized to achieve high-sensitivity detection of toluene molecules in water. Raman signal with a reasonable signal-to-noise ratio has been measured for a concentration of 0.53 mg/L, indicating a detection limit even lower than this value for such a Raman spectroscopic technique. The corresponding enhancement factor is higher than 6 × 103 with respect to the available systems. Thus, this device not only enables direct trace detection and real-time monitoring of the water-polluting status by organic molecules but also supplies a practical approach for biological sensing.


Assuntos
Poluentes Ambientais , Nanopartículas Metálicas , Poluentes da Água , Humanos , Poluentes Ambientais/análise , Nanopartículas Metálicas/química , Água , Prata/química , Análise Espectral Raman/métodos , Tolueno
7.
Opt Lett ; 46(6): 1369-1372, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720189

RESUMO

Plasmonic hollow fibers are fabricated by coating silver-/ gold-alloyed nanoparticles (Ag-Au-ANPs) onto the inner walls of hollow fibers. In this Letter, the Ag-Au-ANPs were synthesized chemically and dissolved in acetone to prepare a colloidal solution, flowed subsequently through the hollow fiber multiple times so that a thin layer of colloidal Ag-Au-ANPs was produced on the inner wall. Annealing at 400°C enabled melting/aggregation of the metallic nanoparticles and consequent formation of closely arranged plasmonic nanostructures fixed solidly on the inner wall. A surface-enhanced Raman scattering (SERS) mechanism was thus established for the liquids flowing through the hollows. The SERS measurements show an enhancement factor >104 for such plasmonic hollow fibers in the direct detection of R6G/ethanol solutions. Confinement of the excitation laser energy inside the hollow space represents an additional contribution to the enhancement mechanism. This is a promising design for the direct on-site SERS detection of molecules in flowing liquids with low concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA