RESUMO
Neutrophil-to-lymphocyte ratio (NLR) is a cheap and easy-to-obtain biomarker that mirrors the balance between innate and adaptive immunity. Cortisol and catecholamines have been identified as major drivers of NLR. High cortisol levels increase neutrophils while simultaneously decreasing lymphocyte counts. Likewise, endogenous catecholamines may cause leukocytosis and lymphopenia. Thus, NLR allows us to monitor patient severity in conditions such as sepsis. Twenty-six puppies with sepsis secondary to canine parvoviral enteritis were treated with and without an immunomodulator. Our group determined the NLR and the plasmatic cortisol levels by chemiluminescence, and norepinephrine (NE) and epinephrine (E) by HPLC during the first 72 h of clinical follow-up. Our results showed that at admission puppies presented an NLR value of 1.8, cortisol of 314.9 nmol/L, NE 3.7, and E 3.3 pmol/mL. Both treatments decreased admission NLR values after 24 h of treatment. However, only the puppies treated with the immunomodulator (I) remained without significant changes in NLR (0.7-1.4) compared to the CT group, and that showed a significant difference (P < 0.01) in their NLR value (0.4-4.6). In addition, we found significant differences in the slope values between the admission and final values of NLR (P < 0.005), cortisol (P < 0.02), and E (P < 0.05) between treatments. Then, our data suggest that the immunomodulator positively affects the number of lymphocytes and neutrophils involved in NLR as well as major drivers like cortisol and epinephrine, which is reflected in clinical parameters and survival.
RESUMO
Canine parvovirus type II (CPV-2) infection induces canine parvoviral enteritis (CPE), which in turn promotes sepsis and systemic inflammatory response syndrome (SIRS). Mortality in this disease is usually registered within 48-72 h post-hospitalization, the critical period of the illness. It has been recently described that the use of an immunomodulator, whose major component is monomeric ubiquitin (mUb) without the last two glycine residues (Ub∆GG), in pediatric human patients with sepsis augments survival. It is known that CXCR4 is the cell receptor of extracellular ubiquitin in humans. This work aimed to explore the effect of one immunomodulator (human Dialyzable Leukocyte Extract-hDLE) as a therapeutic auxiliary in puppies with sepsis and SIRS induced by CPE. We studied two groups of puppies with CPV-2 infection confirmed by polymerase chain reaction. The first group received conventional treatment (CT) and vehicle (V), while the second group received CT plus the immunomodulator (I). We assessed both groups' survival, clinical condition, number of erythrocytes, neutrophils, and lymphocytes during the hospitalization period. In addition, hematocrit, hemoglobin, plasma proteins and cortisol values, as well as norepinephrine/epinephrine and serotonin concentration were determined. Puppies treated with CT + I showed 81% survival, mild clinical signs, and a significant decrease in circulating neutrophils and lymphocytes in the critical period of the treatment. In contrast, the CT + V group presented a survival of 42%, severe clinical status, and no improvement of the parameters evaluated in the critical period of the disease. We determined in silico that human Ub∆GG can bind to dog CXCR4. In conclusion, the administration of a human immunomodulator (0.5 mg/day × 5 days) to puppies with CPE under six months of age reduces the severity of clinical signs, increases survival, and modulates inflammatory cell parameters. Further studies are necessary to take full advantage of these clinical findings, which might be mediated by the human Ub∆GG to canine CXCR4 interaction.