Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 12(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39065119

RESUMO

Microbial melanins are a group of pigments with protective effects against harsh conditions, showing fascinating photoprotective activities, mainly due to their capability to absorb UV radiation. In bacteria, they are produced by the oxidation of L-tyrosine, generating eumelanin and pheomelanin. Meanwhile, allomelanin is produced by fungi through the decarboxylative condensation of malonyl-CoA. Moreover, melanins possess antioxidant and antimicrobial activities, revealing significant properties that can be used in different industries, such as cosmetic, pharmaceutical, and agronomical. In agriculture, melanins have potential applications, including the development of new biological products based on this pigment for the biocontrol of phytopathogenic fungi and bacteria to reduce the excessive and toxic levels of agrochemicals used in fields. Furthermore, there are possibilities to develop and improve new bio-based pesticides that control pest insects through the use of melanin-producing and toxin-producing Bacillus thuringiensis or through the application of melanin to insecticidal proteins to generate a new product with improved resistance to UV radiation that can then be applied to the plants. Melanins and melanin-producing bacteria have potential applications in agriculture due to their ability to improve plant growth. Finally, the bioremediation of water and soils is possible through the application of melanins to polluted soils and water, removing synthetic dyes and toxic metals.

2.
Plants (Basel) ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38592747

RESUMO

The species Senecio nutans Sch. Bip., commonly called "chachacoma", is widely used as a medicinal plant by the Andean communities of Northern Chile. Ethanolic extracts of S. nutans and the main compound, 4-hydroxy-3-(3-methyl-2-butenyl) acetophenone, have shown interesting biological activity. However, due to the high-altitude areas where this species is found, access to S. nutans is very limited. Due to the latter, in this work, we carried out micropropagation in vitro and ex vitro adaptation techniques as an alternative for the massive multiplication, conservation, and in vitro production of high-value metabolites from this plant. The micropropagation and ex vitro adaptation techniques were successfully employed, and UHPLC-DAD analysis revealed no significant changes in the phenolic profile, with acetophenone 4 being the most abundant metabolite, whose antioxidant and antibacterial activity was studied. Independently of the applied culture condition, the ethanolic extracts of S. nutans presented high activity against both Gram-positive and Gram-negative bacteria, demonstrating their antimicrobial capacity. This successful initiation of in vitro and ex vitro cultures provides a biotechnological approach for the conservation of S. nutans and ensures a reliable and consistent source of acetophenone 4 as a potential raw material for pharmacological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA