Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39026740

RESUMO

Enhancers are key drivers of gene regulation thought to act via 3D physical interactions with the promoters of their target genes. However, genome-wide depletions of architectural proteins such as cohesin result in only limited changes in gene expression, despite a loss of contact domains and loops. Consequently, the role of cohesin and 3D contacts in enhancer function remains debated. Here, we developed CRISPRi of regulatory elements upon degron operation (CRUDO), a novel approach to measure how changes in contact frequency impact enhancer effects on target genes by perturbing enhancers with CRISPRi and measuring gene expression in the presence or absence of cohesin. We systematically perturbed all 1,039 candidate enhancers near five cohesin-dependent genes and identified 34 enhancer-gene regulatory interactions. Of 26 regulatory interactions with sufficient statistical power to evaluate cohesin dependence, 18 show cohesin-dependent effects. A decrease in enhancer-promoter contact frequency upon removal of cohesin is frequently accompanied by a decrease in the regulatory effect of the enhancer on gene expression, consistent with a contact-based model for enhancer function. However, changes in contact frequency and regulatory effects on gene expression vary as a function of distance, with distal enhancers (e.g., >50Kb) experiencing much larger changes than proximal ones (e.g., <50Kb). Because most enhancers are located close to their target genes, these observations can explain how only a small subset of genes - those with strong distal enhancers - are sensitive to cohesin. Together, our results illuminate how 3D contacts, influenced by both cohesin and genomic distance, tune enhancer effects on gene expression.

2.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014075

RESUMO

Identifying transcriptional enhancers and their target genes is essential for understanding gene regulation and the impact of human genetic variation on disease1-6. Here we create and evaluate a resource of >13 million enhancer-gene regulatory interactions across 352 cell types and tissues, by integrating predictive models, measurements of chromatin state and 3D contacts, and largescale genetic perturbations generated by the ENCODE Consortium7. We first create a systematic benchmarking pipeline to compare predictive models, assembling a dataset of 10,411 elementgene pairs measured in CRISPR perturbation experiments, >30,000 fine-mapped eQTLs, and 569 fine-mapped GWAS variants linked to a likely causal gene. Using this framework, we develop a new predictive model, ENCODE-rE2G, that achieves state-of-the-art performance across multiple prediction tasks, demonstrating a strategy involving iterative perturbations and supervised machine learning to build increasingly accurate predictive models of enhancer regulation. Using the ENCODE-rE2G model, we build an encyclopedia of enhancer-gene regulatory interactions in the human genome, which reveals global properties of enhancer networks, identifies differences in the functions of genes that have more or less complex regulatory landscapes, and improves analyses to link noncoding variants to target genes and cell types for common, complex diseases. By interpreting the model, we find evidence that, beyond enhancer activity and 3D enhancer-promoter contacts, additional features guide enhancerpromoter communication including promoter class and enhancer-enhancer synergy. Altogether, these genome-wide maps of enhancer-gene regulatory interactions, benchmarking software, predictive models, and insights about enhancer function provide a valuable resource for future studies of gene regulation and human genetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA