Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(11): 342, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39375239

RESUMO

Huanglongbing is a severe citrus disease that causes significant tree and crop losses worldwide. It is caused by three Candidatus liberibacter species and spread by psyllids and infected budwood. Various methods have been used to diagnose and understand HLB, including recent advances in molecular and biochemical assays that explore the pathogen's mode of action and its impact on the host plant. Characterization is essential for developing sustainable HLB management strategies. Nanotechnology, particularly nano sensors and metal nanoparticles, shows potential for precise disease diagnosis and control. Additionally, antibiotics, nanomaterials, and genetic engineering techniques like transgenesis offer promising avenues for mitigating HLB. These diverse approaches, from conventional to cutting-edge, contribute to developing integrated HLB management strategies for sustainable citrus cultivation. The review highlights the significant advancements in conventional and advanced molecular and biochemical characterization of HLB, aiding in early detection and understanding of the infection mechanism. It emphasizes the multidimensional efforts required to characterize disease and devise innovative management strategies. As the citrus industry faces unprecedented challenges, exploring new frontiers in HLB research provides hope for sustainable solutions and a resilient future for global citrus cultivation.


Assuntos
Citrus , Liberibacter , Doenças das Plantas , Citrus/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Liberibacter/genética , Nanotecnologia/métodos , Animais , Engenharia Genética , Hemípteros/microbiologia , Rhizobiaceae/genética
2.
Front Microbiol ; 15: 1378834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784807

RESUMO

The cultivation system requires that the approach providing biomass for all types of metabolic analysis is of excellent quality and reliability. This study was conducted to enhance the efficiency and yield of antifungal substance (AFS) production in Streptomyces yanglinensis 3-10 by optimizing operation conditions of aeration, agitation, carbon source, and incubation time in a fermenter. Dissolved oxygen (DO) and pH were found to play significant roles in AFS production. The optimum pH for the production of AFS in S. yanglinensis 3-10 was found to be 6.5. As the AFS synthesis is generally thought to be an aerobic process, DO plays a significant role. The synthesis of bioactive compounds can vary depending on how DO affects growth rate. This study validates that the high growth rate and antifungal activity required a minimum DO concentration of approximately 20% saturation. The DO supply in a fermenter can be raised once agitation and aeration have been adjusted. Consequently, DO can stimulate the development of bacteria and enzyme production. A large shearing effect could result from the extreme agitation, harming the cell and deactivating its products. The highest inhibition zone diameter (IZD) was obtained with 3% starch, making starch a more efficient carbon source than glucose. Temperature is another important factor affecting AFS production. The needed fermentation time would increase and AFS production would be reduced by the too-low operating temperature. Furthermore, large-scale fermenters are challenging to manage at temperatures that are far below from room temperature. According to this research, 28°C is the ideal temperature for the fermentation of S. yanglinensis 3-10. The current study deals with the optimization of submerged batch fermentation involving the modification of operation conditions to effectively enhance the efficiency and yield of AFS production in S. yanglinensis 3-10.

3.
Front Microbiol ; 15: 1344831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585697

RESUMO

Rice serves as a staple food across various continents worldwide. The rice plant faces significant threats from a range of fungal, bacterial, and viral pathogens. Among these, rice false smut disease (RFS) caused by Villosiclava virens is one of the devastating diseases in rice fields. This disease is widespread in major rice-growing regions such as China, Pakistan, Bangladesh, India, and others, leading to significant losses in rice plantations. Various toxins are produced during the infection of this disease in rice plants, impacting the fertilization process as well. This review paper lightens the disease cycle, plant immunity, and infection process during RFS. Mycotoxin production in RFS affects rice plants in multiple ways, although the exact phenomena are still unknown.

4.
Heliyon ; 10(7): e28209, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586335

RESUMO

Background and aim: Citrus bent leaf viroid (CBLVd) is one of the emerging and widely distributed viroids in citrus-growing areas of the world, including Pakistan. Previously, CBLVd has been reported in Pakistan for the first time in 2009. Therefore, characterization of CBLVd is required to monitor the viroid status in the citrus orchards concerning citrus decline. Methods: Biological and molecular characterization of CBLVd was studied through biological indexing and confirmation through RT-PCR, followed by phylogenetic analysis of selected CBLVd isolates. Among four citrus cultivars viz., Kinnow (Citrus nobilis × Citrus deliciosa), Mosambi (C. sinensis), Futrell's Early (C. reticulata) and Lemon (C. medica) used as indicator plants for two transmission trials viz., graft inoculation and mechanical inoculation. Graft inoculation was more efficient than mechanical inoculation. Results: Symptoms such as mild mosaic, slight backward leaf bending, and leaf curling were observed after eight months' post-inoculation. Citrus nobilis × Citrus deliciosa, C. reticulata and C. sinensis were more sensitive to CBLVd as compared to C. medica. Inoculated plants were reconfirmed through RT-PCR amplicons of 233 bp. The phylogenetic tree of submitted sequences showed more than 90% relevance of CBLVd in Pakistan compared to the rest of the world. Conclusions: There was slight genetic variability, but more than 90% relevance was found among the submitted and already reported CBLVd isolate from Pakistan. Scanty literature is available regarding the biological and molecular studies of CBLVd in Pakistan. Therefore, the transmission and molecular characterization of CBLVd in Pakistan were studied for the first time.

5.
Microorganisms ; 11(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37894173

RESUMO

Mycoviruses, or fungal viruses, are prevalent in all significant fungal kingdoms and genera. These low-virulence viruses can be used as biocontrol agents to manage fungal diseases. These viruses are divided into 19 officially recognized families and 1 unclassified genus. Mycoviruses alter sexual reproduction, pigmentation, and development. Spores and fungal hypha spread mycoviruses. Isometric particles mostly encapsulate dsRNA mycoviruses. The widespread plant-pathogenic fungus Rhizoctonia solani, which has caused a rice sheath blight, has hosted many viruses with different morphologies. It causes significant crop diseases that adversely affect agriculture and the economy. Rice sheath blight threatens the 40% of the global population that relies on rice for food and nutrition. This article reviews mycovirology research on Rhizoctonia solani to demonstrate scientific advances. Mycoviruses control rice sheath blight. Hypovirulence-associated mycoviruses are needed to control R. solani since no cultivars are resistant. Mycoviruses are usually cryptic, but they can benefit the host fungus. Phytopathologists may use hypovirulent viruses as biological control agents. New tools are being developed based on host genome studies to overcome the intellectual challenge of comprehending the interactions between viruses and fungi and the practical challenge of influencing these interactions to develop biocontrol agents against significant plant pathogens.

6.
Front Microbiol ; 14: 1153437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143531

RESUMO

Rice production is severely hampered by the bakanae disease (Fusarium fujikuroi), formerly recognized as Fusarium moniliforme. F. moniliforme was called the F. fujikuroi species complex (FFSC) because it was later discovered that it had some separate species. The FFSC's constituents are also well recognized for producing phytohormones, which include auxins, cytokinin, and gibberellins (GAs). The normal symptoms of bakanae disease in rice are exacerbated by GAs. The members of the FFSC are responsible for the production of fumonisin (FUM), fusarins, fusaric acid, moniliformin, and beauvericin. These are harmful to both human and animal health. This disease is common around the world and causes significant yield losses. Numerous secondary metabolites, including the plant hormone gibberellin, which causes classic bakanae symptoms, are produced by F. fujikuroi. The strategies for managing bakanae, including the utilization of host resistance, chemical compounds, biocontrol agents, natural goods, and physical approaches, have been reviewed in this study. Bakanae disease is still not entirely preventable, despite the adoption of many different tactics that have been used to manage it. The benefits and drawbacks of these diverse approaches are discussed by the authors. The mechanisms of action of the main fungicides as well as the strategies for resistance to them are outlined. The information compiled in this study will contribute to a better understanding of the bakanae disease and the development of a more effective management plan for it.

7.
Front Microbiol ; 14: 1291904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38352061

RESUMO

Integrating fungi into fuel cell systems presents a promising opportunity to address environmental pollution while simultaneously generating energy. This review explores the innovative concept of constructing wetlands as fuel cells for pollutant degradation, offering a practical and eco-friendly solution to pollution challenges. Fungi possess unique capabilities in producing power, fuel, and electricity through metabolic processes, drawing significant interest for applications in remediation and degradation. Limited data exist on fungi's ability to generate electricity during catalytic reactions involving various enzymes, especially while remediating pollutants. Certain species, such as Trametes versicolor, Ganoderma lucidum, Galactomyces reessii, Aspergillus spp., Kluyveromyce smarxianus, and Hansenula anomala, have been reported to generate electricity at 1200 mW/m3, 207 mW/m2, 1,163 mW/m3, 438 mW/m3, 850,000 mW/m3, and 2,900 mW/m3, respectively. Despite the eco-friendly potential compared to conventional methods, fungi's role remains largely unexplored. This review delves into fungi's exceptional potential as fuel cell catalysts, serving as anodic or cathodic agents to mitigate land, air, and water pollutants while simultaneously producing fuel and power. Applications cover a wide range of tasks, and the innovative concept of wetlands designed as fuel cells for pollutant degradation is discussed. Cost-effectiveness may vary depending on specific contexts and applications. Fungal fuel cells (FFCs) offer a versatile and innovative solution to global challenges, addressing the increasing demand for alternative bioenergy production amid population growth and expanding industrial activities. The mechanistic approach of fungal enzymes via microbial combinations and electrochemical fungal systems facilitates the oxidation of organic substrates, oxygen reduction, and ion exchange membrane orchestration of essential reactions. Fungal laccase plays a crucial role in pollutant removal and monitoring environmental contaminants. Fungal consortiums show remarkable potential in fine-tuning FFC performance, impacting both power generation and pollutant degradation. Beyond energy generation, fungal cells effectively remove pollutants. Overall, FFCs present a promising avenue to address energy needs and mitigate pollutants simultaneously.

8.
Front Microbiol ; 13: 961794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033855

RESUMO

Alfalfa plays a significant role in the pasture ecosystems of China's north, northeast, and northwest regions. It is an excellent forage for livestock, improves soil structure, prevents soil erosion, and has ecological benefits. Presently root rot is a significant threat to the alfalfa productivity because of the survival of the pathogens as soil-borne and because of lack of microbial competition in the impoverished nutrient-deficient soils and resistant cultivars. Furthermore, these regions' extreme ecological and environmental conditions predispose alfalfa to root rot. Moisture and temperature, in particular, have a considerable impact on the severity of root rot. Pathogens such as Fusarium spp. and Rhizoctonia solani are predominant, frequently isolated, and of major concern. These pathogens work together as disease complexes, so finding a host genotype resistant to disease complexes is challenging. Approaches to root rot control in these regions include mostly fungicides treatments and cultural practices and very few reports on the usage of biological control agents. As seed treatment, fungicides such as carbendazim are frequently used to combat root rot; however, resistance to fungicides has arisen. However, breeding and transgenic approaches could be more efficient and sustainable long-term control strategies, especially if resistance to disease complexes may be identified. Yet, research in China is mainly limited to field investigation of root rot and disease resistance evaluation. In this review, we describe climatic conditions of pastoral regions and the role of alfalfa therein and challenges of root rot, the distribution of root rot in the world and China, and the impact of root rot pathogens on alfalfa in particular R. solani and Fusarium spp., effects of environmental factors on root rot and summarize to date disease management approach.

9.
Front Microbiol ; 13: 884469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694310

RESUMO

Rhizoctonia solani is a pathogen that causes considerable harm to plants worldwide. In the absence of hosts, R. solani survives in the soil by forming sclerotia, and management methods, such as cultivar breeding, crop rotations, and fungicide sprays, are insufficient and/or inefficient in controlling R. solani. One of the most challenging problems facing agriculture in the twenty-first century besides with the impact of global warming. Environmentally friendly techniques of crop production and improved agricultural practices are essential for long-term food security. Trichoderma spp. could serve as an excellent example of a model fungus to enhance crop productivity in a sustainable way. Among biocontrol mechanisms, mycoparasitism, competition, and antibiosis are the fundamental mechanisms by which Trichoderma spp. defend against R. solani, thereby preventing or obstructing its proliferation. Additionally, Trichoderma spp. induce a mixed induced systemic resistance (ISR) or systemic acquired resistance (SAR) in plants against R. solani, known as Trichoderma-ISR. Stimulation of every biocontrol mechanism involves Trichoderma spp. genes responsible for encoding secondary metabolites, siderophores, signaling molecules, enzymes for cell wall degradation, and plant growth regulators. Rhizoctonia solani biological control through genes of Trichoderma spp. is summarized in this paper. It also gives information on the Trichoderma-ISR in plants against R. solani. Nonetheless, fast-paced current research on Trichoderma spp. is required to properly utilize their true potential against diseases caused by R. solani.

10.
Front Microbiol ; 13: 1091288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36815202

RESUMO

Sustainable development relies heavily on a food system that is both safe and secure. Several approaches may lead to sustainability and food safety. An increase in the cultivation of legume crops is one of the approaches for enhancing agricultural viability and ensuring adequate food supply. Legumes may increase daily intake of fiber, folate, and protein as substitutes for meat and dairy. They are also crucial in various intercropping systems worldwide. However, legume production has been hampered by Rhizoctonia solani due to its destructive lifestyle. R. solani causes blights, damping off, and rotting diseases in legume crops. Our knowledge of the global distribution of R. solani associated with legume crops (alfalfa, soybean, chickpea, pea, lentil, common bean, and peanut), detection, diagnosis, and management of legume crops diseases caused by R. solani is limited. Traditional approaches rely on the incubation of R. solani, visual examination of symptoms on host legume crops, and microscopy identification. However, these approaches are time-consuming, require technical expertise, fail to detect a minimal amount of inoculum, and are unreliable. Biochemical and molecular-based approaches have been used with great success recently because of their excellent sensitivity and specificity. Along with conventional PCR, nested PCR, multiplex PCR, real-time PCR, magnetic-capture hybridization PCR, and loop-mediated isothermal amplification have been widely used to detect and diagnose R. solani. In the future, Next-generation sequencing will likely be used to a greater extent to detect R. solani. This review outlines global distribution, survival, infection and disease cycle, traditional, biochemical, molecular, and next-generation sequencing detection and diagnostic approaches, and an overview of the resistant resources and other management strategies to cope with R. solani.

11.
Environ Sci Pollut Res Int ; 28(8): 9002-9019, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33464530

RESUMO

Plant diseases significantly impact the global economy, and plant pathogenic microorganisms such as nematodes, viruses, bacteria, fungi, and viroids may be the etiology for most infectious diseases. In agriculture, the development of disease-free plants is an important strategy for the determination of the survival and productivity of plants in the field. This article reviews biosensor methods of disease detection that have been used effectively in other fields, and these methods could possibly transform the production methods of the agricultural industry. The precise identification of plant pathogens assists in the assessment of effective management steps for minimization of production loss. The new plant pathogen detection methods include evaluation of signs of disease, detection of cultured organisms, or direct examination of contaminated tissues through molecular and serological techniques. Laboratory-based approaches are costly and time-consuming and require specialized skills. The conclusions of this review also indicate that there is an urgent need for the establishment of a reliable, fast, accurate, responsive, and cost-effective testing method for the detection of field plants at early stages of growth. We also summarized new emerging biosensor technologies, including isothermal amplification, detection of nanomaterials, paper-based techniques, robotics, and lab-on-a-chip analytical devices. However, these constitute novelty in the research and development of approaches for the early diagnosis of pathogens in sustainable agriculture.


Assuntos
Técnicas Biossensoriais , Plantas , Agricultura , Animais , Fungos , Dispositivos Lab-On-A-Chip , Tecnologia
12.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276445

RESUMO

In most crop breeding programs, the rate of yield increment is insufficient to cope with the increased food demand caused by a rapidly expanding global population. In plant breeding, the development of improved crop varieties is limited by the very long crop duration. Given the many phases of crossing, selection, and testing involved in the production of new plant varieties, it can take one or two decades to create a new cultivar. One possible way of alleviating food scarcity problems and increasing food security is to develop improved plant varieties rapidly. Traditional farming methods practiced since quite some time have decreased the genetic variability of crops. To improve agronomic traits associated with yield, quality, and resistance to biotic and abiotic stresses in crop plants, several conventional and molecular approaches have been used, including genetic selection, mutagenic breeding, somaclonal variations, whole-genome sequence-based approaches, physical maps, and functional genomic tools. However, recent advances in genome editing technology using programmable nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated (Cas) proteins have opened the door to a new plant breeding era. Therefore, to increase the efficiency of crop breeding, plant breeders and researchers around the world are using novel strategies such as speed breeding, genome editing tools, and high-throughput phenotyping. In this review, we summarize recent findings on several aspects of crop breeding to describe the evolution of plant breeding practices, from traditional to modern speed breeding combined with genome editing tools, which aim to produce crop generations with desired traits annually.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Genoma de Planta , Melhoramento Vegetal/métodos , Plantas/genética , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA