Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 177: 117052, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943988

RESUMO

Adipose-derived mesenchymal stromal cells (AD-MSCs) are an essential issue in modern medicine. Extensive preclinical and clinical studies have shown that mesenchymal stromal/stem cells, including AD-MSCs, have specific properties (ability to differentiate into other cells, recruitment to the site of injury) of particular importance in the regenerative process. Ongoing research aims to elucidate factors supporting AD-MSC culture and differentiation in vitro. Angiopoietin-like proteins (ANGPTLs), known for their pleiotropic effects in lipid and glucose metabolism, may play a significant role in this context. Regeneration is a complex and dynamic process controlled by many factors. ANGPTL6 (Angiopoietin-related growth factor, AGF), among many activities modulated the biological activity of stem cells. This study examined the influence of synthesized AGF-derived peptides, designated as AGF9 and AGF27, on AD-MSCs. AGF9 and AGF27 enhanced the viability and migration of AD-MSCs and acted as a chemotactic factor for these cells. AGF9 stimulated chondrogenesis and lipid synthesis during AD-MSCs differentiation, influenced AD-MSCs cytokine secretion and modulated transcriptome for such basic cell activities as migration, transport of molecules, and apoptosis. The ability of AGF9 to modulate the biological activity of AD-MSCs warrants the consideration of this peptide a noteworthy therapeutic agent that deserves further investigation for applications in regenerative medicine.


Assuntos
Tecido Adiposo , Proteínas Semelhantes a Angiopoietina , Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Humanos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteínas Semelhantes a Angiopoietina/metabolismo , Condrogênese/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Peptídeos/farmacologia , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Citocinas/metabolismo
2.
Microb Cell Fact ; 23(1): 81, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481305

RESUMO

BACKGROUND: One of the leading current trends in technology is the miniaturization of devices to the microscale and nanoscale. The highly advanced approaches are based on biological systems, subjected to bioengineering using chemical, enzymatic and recombinant methods. Here we have utilised the biological affinity towards cellulose of the cellulose binding domain (CBD) fused with recombinant proteins. RESULTS: Here we focused on fusions with 'artificial', concatemeric proteins with preprogrammed functions, constructed using DNA FACE™ technology. Such CBD fusions can be efficiently attached to micro-/nanocellulose to form functional, hybrid bionanoparticles. Microcellulose (MCC) particles were generated by a novel approach to enzymatic hydrolysis using Aspergillus sp. cellulase. The interaction between the constructs components - MCC, CBD and fused concatemeric proteins - was evaluated. Obtaining of hybrid biomicroparticles of a natural cellulose biocarrier with proteins with therapeutic properties, fused with CBD, was confirmed. Further, biological tests on the hybrid bioMCC particles confirmed the lack of their cytotoxicity on 46BR.1 N fibroblasts and human adipose derived stem cells (ASCs). The XTT analysis showed a slight inhibition of the proliferation of 46BR.1 N fibroblasts and ACSs cells stimulated with the hybrid biomicroparticles. However, in both cases no changes in the morphology of the examined cells after incubation with the hybrid biomicroparticles' MCC were detected. CONCLUSIONS: Microcellulose display with recombinant proteins involves utilizing cellulose, a natural polymer found in plants, as a platform for presenting or displaying proteins. This approach harnesses the structural properties of cellulose to express or exhibit various recombinant proteins on its surface. It offers a novel method for protein expression, presentation, or immobilization, enabling various applications in biotechnology, biomedicine, and other fields. Microcellulose shows promise in biomedical fields for wound healing materials, drug delivery systems, tissue engineering scaffolds, and as a component in bio-sensors due to its biocompatibility and structural properties.


Assuntos
Biotecnologia , Celulose , Humanos , Proteínas Recombinantes de Fusão/metabolismo , Celulose/metabolismo , Proteínas Recombinantes/genética , Hidrólise
3.
Biomedicines ; 12(3)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38540183

RESUMO

Nucleopeptides (NPs) represent synthetic polymers created by attaching nucleobases to the side chains of amino acid residues within peptides. These compounds amalgamate the characteristics of peptides and nucleic acids, showcasing a unique ability to recognize RNA structures. In this study, we present the design and synthesis of Fmoc-protected nucleobase amino acids (1,4-TzlNBAs) and a new class of NPs, where canonical nucleobases are affixed to the side chain of L-homoalanine (Hal) through a 1,4-linked-1,2,3-triazole (HalTzl). Fmoc-protected 1,4-TzlNBAs suitable for HalTzl synthesis were obtained via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) conjugation of Fmoc-L-azidohomoalanine (Fmoc-Aha) and N1- or N9-propargylated nucleobases or their derivatives. Following this, two trinucleopeptides, HalTzlAAA and HalTzlAGA, and the hexanucleopeptide HalTzlTCCCAG, designed to complement bulge and outer loop structures of TAR (trans-activation response element) RNA HIV-1, were synthesized using the classical solid-phase peptide synthesis (SPPS) protocol. The binding between HalTzls and fluorescently labeled 5'-(FAM(6))-TAR UCU and UUU mutant was characterized using circular dichroism (CD) and fluorescence spectroscopy. CD results confirmed the binding of HalTzls to TAR RNA, which was evident by a decrease in ellipticity band intensity around 265 nm during complexation. CD thermal denaturation studies indicated a relatively modest effect of complexation on the stability of TAR RNA structure. The binding of HalTzls at an equimolar ratio only marginally increased the melting temperature (Tm) of the TAR RNA structure, with an increment of less than 2 °C in most cases. Fluorescence spectroscopy revealed that HalTzlAAA and HalTzlAGA, complementary to UUU or UCU bulges, respectively, exhibited disparate affinities for the TAR RNA structure (with Kd ≈ 30 and 256 µM, respectively). Hexamer HalTzlTCCCAG, binding to the outer loop of TARUCU, demonstrated a moderate affinity with Kd ≈ 38 µM. This study demonstrates that newly designed HalTzls effectively bind the TAR RNA structure, presenting a potential new class of RNA binders and may be a promising scaffold for the development of a new class of antiviral drugs.

4.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338741

RESUMO

Proprotein convertase subtilisin/kexin 9 (PCSK9) is a protein that plays a key role in the metabolism of low-density lipoprotein (LDL) cholesterol. The gain-of-function mutations of the PCSK9 gene lead to a reduced number of surface LDL receptors by binding to them, eventually leading to endosomal degradation. This, in turn, is the culprit of hypercholesterolemia, resulting in accelerated atherogenesis. The modern treatment for hypercholesterolemia encompasses the use of biological drugs against PCSK9, like monoclonal antibodies and gene expression modulators such as inclisiran-a short, interfering RNA (siRNA). Peptide nucleic acid (PNA) is a synthetic analog of nucleic acid that possesses a synthetic peptide skeleton instead of a phosphate-sugar one. This different structure determines the unique properties of PNA (e.g., neutral charge, enzymatic resistance, and an enormously high affinity with complementary DNA and RNA). Therefore, it might be possible to use PNA against PCSK9 in the treatment of hypercholesterolemia. We sought to explore the impact of three selected PNA oligomers on PCSK9 gene expression. Using a cell-free transcription/translation system, we showed that one of the tested PNA strands was able to reduce the PCSK9 gene expression down to 74%, 64%, and 68%, as measured by RT-real-time PCR, Western blot, and HPLC, respectively. This preliminary study shows the high applicability of a cell-free enzymatic environment as an efficient tool in the initial evaluation of biologically active PNA molecules in the field of hypercholesterolemia research. This cell-free approach allows for the omission of the hurdles associated with transmembrane PNA transportation at the early stage of PNA selection.


Assuntos
Hipercolesterolemia , Inibidores de PCSK9 , Ácidos Nucleicos Peptídicos , Humanos , Expressão Gênica , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Ácidos Nucleicos Peptídicos/farmacologia , Pró-Proteína Convertase 9/efeitos dos fármacos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertases/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Subtilisina/genética , Inibidores de PCSK9/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA