Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
ACS Nano ; 18(17): 11025-11041, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626916

RESUMO

ALK-positive NSCLC patients demonstrate initial responses to ALK tyrosine kinase inhibitor (TKI) treatments, but eventually develop resistance, causing rapid tumor relapse and poor survival rates. Growing evidence suggests that the combination of drug and immune therapies greatly improves patient survival; however, due to the low immunogenicity of the tumors, ALK-positive patients do not respond to currently available immunotherapies. Tumor-associated macrophages (TAMs) play a crucial role in facilitating lung cancer growth by suppressing tumoricidal immune activation and absorbing chemotherapeutics. However, they can also be programmed toward a pro-inflammatory tumor suppressive phenotype, which represents a highly active area of therapy development. Iron loading of TAMs can achieve such reprogramming correlating with an improved prognosis in lung cancer patients. We previously showed that superparamagnetic iron oxide nanoparticles containing core-cross-linked polymer micelles (SPION-CCPMs) target macrophages and stimulate pro-inflammatory activation. Here, we show that SPION-CCPMs stimulate TAMs to secrete reactive nitrogen species and cytokines that exert tumoricidal activity. We further show that SPION-CCPMs reshape the immunosuppressive Eml4-Alk lung tumor microenvironment (TME) toward a cytotoxic profile hallmarked by the recruitment of CD8+ T cells, suggesting a multifactorial benefit of SPION-CCPM application. When intratracheally instilled into lung cancer-bearing mice, SPION-CCPMs delay tumor growth and, after first line therapy with a TKI, halt the regrowth of relapsing tumors. These findings identify SPIONs-CCPMs as an adjuvant therapy, which remodels the TME, resulting in a delay in the appearance of resistant tumors.


Assuntos
Crizotinibe , Neoplasias Pulmonares , Nanopartículas Magnéticas de Óxido de Ferro , Microambiente Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Nanopartículas Magnéticas de Óxido de Ferro/química , Humanos , Camundongos , Crizotinibe/farmacologia , Crizotinibe/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino
2.
Acta Physiol (Oxf) ; 240(4): e14126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517248

RESUMO

AIM: Although of potential biomedical relevance, dipeptide metabolism has hardly been studied. We found the dipeptidase carnosinase-2 (CN2) to be abundant in human proximal tubules, which regulate water and solute homeostasis. We therefore hypothesized, that CN2 has a key metabolic role, impacting proximal tubular transport function. METHODS: A knockout of the CN2 gene (CNDP2-KO) was generated in human proximal tubule cells and characterized by metabolomics, RNA-seq analysis, paracellular permeability analysis and ion transport. RESULTS: CNDP2-KO in human proximal tubule cells resulted in the accumulation of cellular dipeptides, reduction of amino acids and imbalance of related metabolic pathways, and of energy supply. RNA-seq analyses indicated altered protein metabolism and ion transport. Detailed functional studies demonstrated lower CNDP2-KO cell viability and proliferation, and altered ion and macromolecule transport via trans- and paracellular pathways. Regulatory and transport protein abundance was disturbed, either as a consequence of the metabolic imbalance or the resulting functional disequilibrium. CONCLUSION: CN2 function has a major impact on intracellular amino acid and dipeptide metabolism and is essential for key metabolic and regulatory functions of proximal tubular cells. These findings deserve in vivo analysis of the relevance of CN2 for nephron function and regulation of body homeostasis.


Assuntos
Dipeptidases , Humanos , Dipeptidases/genética , Dipeptidases/metabolismo , Dipeptídeos/metabolismo , Túbulos Renais Proximais/metabolismo , Homeostase , Aminoácidos/metabolismo
4.
Cell Mol Life Sci ; 81(1): 115, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436764

RESUMO

INTRODUCTION: The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS: To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS: The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION: YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.


Assuntos
Comunicação Celular , Fígado , Proteínas de Sinalização YAP , Animais , Camundongos , Comunicação Celular/genética , Células Endoteliais , Hepatócitos , Ligantes , Fígado/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167016, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38198970

RESUMO

Polymorphisms of group VIA calcium-independent phospholipase A2 (PLA2G6) are associated with blood C-reactive protein suggesting its role in inflammation. We showed that myeloid-specific Pla2g6-deficiency in Pla2g6M-/- mice led to exaggerated inflammation and fibrosis in a lean fatty liver model. We here investigated whether these mutants display alteration in immune response after treatment with E. coli lipopolysaccharides (LPS) under acute (a single dose) and persistent (four doses) conditions. Without LPS treatment, male Pla2g6M-/- (but not Flox) mice at 12 months of age exhibited splenomegaly and hepatic necrosis, and ~ 30 % of them exhibited autoimmune hepatitis showing lymphoplasma cells with CD3(+) and CD45R(+) staining. Under acute LPS, male mutants showed an elevation of plasma MIP-1α and immunoglobulinA as well as upregulation of hepatic apoptosis and fibrosis PARP-1, Bax, MCP-1, α-SMA, and collagen I proteins. Their bone-marrow-derived macrophages also showed an elevation of MIP-1α release upon LPS stimulation in vitro. Female mutants under acute LPS showed a moderate increase in plasma KC/CXCL1, MCP-1, and IL10, and they showed no remarkable increase in hepatic fibrosis under acute or persistent LPS. Male mutants under persistent LPS displayed an elevation of aspartate aminotransferase, blood eosinophils, and hepatic apoptosis. Moreover, ~30 % of these mutants exhibited eosinophilic sclerosing portal hepatitis associated with an upregulated protein expression of hepatic CD8α, CD68, eosinophilic cationic protein, and Ly6G. Thus, myeloid-PLA2G6 deficiency led to an autoimmune and LPS-induced inflammatory liver disease via MIP-1α in a male-predominant manner. Our results may be applicable to patients with PLA2G6 mutations who undergo bacterial infection and sepsis.


Assuntos
Lipopolissacarídeos , Fosfolipases A2 Independentes de Cálcio , Animais , Feminino , Humanos , Masculino , Camundongos , Quimiocina CCL3 , Escherichia coli , Fibrose , Fosfolipases A2 do Grupo VI , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia
6.
Nat Rev Mol Cell Biol ; 25(2): 133-155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37783783

RESUMO

In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.


Assuntos
Ferro , Fatores de Transcrição , Animais , Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Fatores de Transcrição/metabolismo , Homeostase/fisiologia , Estresse Oxidativo , Mamíferos/metabolismo
8.
Mech Ageing Dev ; 215: 111869, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37678569

RESUMO

Iron is the most abundant trace element in the human body. Since iron can switch between its 2-valent and 3-valent form it is essential in various physiological processes such as energy production, proliferation or DNA synthesis. Especially high metabolic organs such as the heart rely on iron-associated iron-sulfur and heme proteins. However, due to switches in iron oxidation state, iron overload exhibits high toxicity through formation of reactive oxygen species, underlining the importance of balanced iron levels. Growing evidence demonstrates disturbance of this balance during aging. While age-associated cardiovascular diseases are often related to iron deficiency, in physiological aging cardiac iron accumulates. To understand these changes, we focused on inflammation and proteolysis, two hallmarks of aging, and their role in iron metabolism. Via the IL-6-hepcidin axis, inflammation and iron status are strongly connected often resulting in anemia accompanied by infiltration of macrophages. This tight connection between anemia and inflammation highlights the importance of the macrophage iron metabolism during inflammation. Age-related decrease in proteolytic activity additionally affects iron balance due to impaired degradation of iron metabolism proteins. Therefore, this review accentuates alterations in iron metabolism during aging with regards to inflammation and proteolysis to draw attention to their implications and associations.


Assuntos
Anemia , Ferro , Humanos , Ferro/metabolismo , Proteólise , Anemia/complicações , Inflamação , Envelhecimento/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G453-G457, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37667844

RESUMO

The liver plays a crucial role in maintaining systemic iron homeostasis through iron storage, sensing of systemic iron needs, and production of the iron-regulatory hormone hepcidin. While mice are commonly used as models for studying human iron homeostasis, their liver structure differs significantly from humans. Since the mouse liver is structured in six separated lobes, often, the analysis of a single defined lobe is preferred due to concerns over data reproducibility between experimental cohorts. In this study, we compared iron-related parameters in distinct liver lobes of C57BL/6 wild-type mice across different ages. We found that the non-heme iron levels, as well as the mRNA and protein expression of iron storage protein Ferritin and the iron importer Transferrin Receptor 1, were similar between liver lobes. Additionally, the mRNA expression of Hepcidin, as well as its regulators, Bmp2 and Bmp6, and iron importers Zip8 and Zip14 were comparable. Minor differences were observed in Ferroportin mRNA levels of 24-wk-old mice; however, this did not correlate with altered iron content. The findings in wild-type mice were reproduced in Hfe knock-out mice - a well-established genetic model of the most prevalent form of hemochromatosis. Overall, our results indicate that C57BL/6 mouse liver lobes can be used interchangeably for assessing iron content and expression of iron-related genes. Understanding if these findings are applicable to other mouse developmental stages, strains, or models of (iron-related) disorders will be key to promote reduction of experimental animal numbers and facilitate resource sharing among research groups studying liver iron homeostasis.NEW & NOTEWORTHY This study reveals that, despite being structurally separated, liver lobes from C57BL/6 wild-type and iron-overloaded mice can be used interchangeably for the evaluation of iron content and expression of iron-related genes.


Assuntos
Hemocromatose , Hepcidinas , Camundongos , Humanos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Antígenos de Histocompatibilidade Classe I , Reprodutibilidade dos Testes , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hemocromatose/metabolismo , Ferro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos Knockout , Homeostase
10.
Am J Hematol ; 98(9): 1425-1435, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497888

RESUMO

SLN124, an N-acetylgalactosamine conjugated 19-mer short interfering RNA, is being developed to treat iron-loading anemias (including beta-thalassemia and myelodysplastic syndromes) and myeloproliferative neoplasms (polycythemia vera). Through hepatic targeting and silencing of the TMPRSS6 gene, SLN124 increases endogenous hepcidin synthesis. This is the first clinical report of an siRNA targeting a component of iron homeostasis. This first-in-human, phase 1 study assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of single ascending doses of SLN124 (1.0, 3.0, and 4.5 mg/kg) in healthy volunteers. Twenty-four participants were randomized in three sequential cohorts of eight subjects, each to receive a single dose of either SLN124 or placebo (6:2 randomization), administered subcutaneously. There were no serious or severe adverse events, or discontinuations due to adverse events, and most treatment-emergent adverse events were mild, including transient mild injection site reactions, resolving without intervention. SLN124 was rapidly absorbed, with a median tmax of 4-5 h across all treatment groups, and largely eliminated from plasma by 48 h. Plasma concentrations increased in a greater than dose proportional fashion between treatment groups. In all SLN124 groups, a dose-related effect was observed across iron metabolism markers, and across erythroid markers, SLN124 resulted in increased plasma hepcidin levels, peaking around Day 29, and consequent dose-related sustained reductions in plasma iron and transferrin saturation with decreased reticulocyte production, MCHC, and MCV. Results suggest duration of action lasting up to 56 days after a single SLN124 dose, on hepcidin and hematological parameters of iron metabolism (serum iron and TSAT).


Assuntos
Anemia Ferropriva , Ferro , Humanos , Hepcidinas/genética , RNA Interferente Pequeno/genética , Voluntários Saudáveis , Anemia Ferropriva/tratamento farmacológico , Método Duplo-Cego
11.
Pulm Circ ; 13(2): e12242, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37292089

RESUMO

Iron deficiency is common in idiopathic and heritable pulmonary arterial hypertension patients (I/HPAH). A previous report suggested a dysregulation of the iron hormone hepcidin, which is controlled by BMP/SMAD signaling involving the bone morphogenetic protein receptor 2 (BMPR-II). Pathogenic variants in the BMPR2 gene are the most common cause of HPAH. Their effect on patients' hepcidin levels has not been investigated. The aim of this study was to assess whether iron metabolism and regulation of the iron regulatory hormone hepcidin was disturbed in I/HPAH patients with and without a pathogenic variant in the gene BMPR2 compared to healthy controls. In this explorative, cross-sectional study hepcidin serum levels were quantified by enzyme-linked immunosorbent assay. We measured iron status, inflammatory parameters and hepcidin modifying proteins such as IL6, erythropoietin, and BMP2, BMP6 in addition to BMPR-II protein and mRNA levels. Clinical routine parameters were correlated with hepcidin levels. In total 109 I/HPAH patients and controls, separated into three groups, 23 BMPR2 variant-carriers, 56 BMPR2 noncarriers and 30 healthy controls were enrolled. Of these, 84% had iron deficiency requiring iron supplementation. Hepcidin levels were not different between groups and corresponded to the degree of iron deficiency. The levels of IL6, erythropoietin, BMP2, or BMP6 showed no correlation with hepcidin expression. Hence, iron homeostasis and hepcidin regulation was largely independent from these parameters. I/HPAH patients had a physiologically normal iron regulation and no false elevation of hepcidin levels. Iron deficiency was prevalent albeit independent of pathogenic variants in the BMPR2 gene.

12.
Am J Hematol ; 98(8): 1223-1235, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37199280

RESUMO

The expression of the iron regulatory hormone hepcidin in hepatocytes is regulated by the BMP-SMAD pathway through the type I receptors ALK2 and ALK3, the type II receptors ACVR2A and BMPR2, and the ligands BMP2 and BMP6. We previously identified the immunophilin FKBP12 as a new hepcidin inhibitor that acts by blocking ALK2. Both the physiologic ALK2 ligand BMP6 and the immunosuppressive drug Tacrolimus (TAC) displace FKBP12 from ALK2 and activate the signaling. However, the molecular mechanism whereby FKBP12 regulates BMP-SMAD pathway activity and thus hepcidin expression remains unclear. Here, we show that FKBP12 acts by modulating BMP receptor interactions and ligand responsiveness. We first demonstrate that in primary murine hepatocytes TAC regulates hepcidin expression exclusively via FKBP12. Downregulation of the BMP receptors reveals that ALK2, to a lesser extent ALK3, and ACVR2A are required for hepcidin upregulation in response to both BMP6 and TAC. Mechanistically, TAC and BMP6 increase ALK2 homo-oligomerization and ALK2-ALK3 hetero-oligomerization and the interaction between ALK2 and the type II receptors. By acting on the same receptors, TAC and BMP6 cooperate in BMP pathway activation and hepcidin expression both in vitro and in vivo. Interestingly, the activation state of ALK3 modulates its interaction with FKBP12, which may explain the cell-specific activity of FKBP12. Overall, our results identify the mechanism whereby FKBP12 regulates the BMP-SMAD pathway and hepcidin expression in hepatocytes, and suggest that FKBP12-ALK2 interaction is a potential pharmacologic target in disorders caused by defective BMP-SMAD signaling and characterized by low hepcidin and high BMP6 expression.


Assuntos
Hepcidinas , Proteína 1A de Ligação a Tacrolimo , Humanos , Camundongos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Ligantes , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Hepatócitos/metabolismo , Proteína Morfogenética Óssea 6/genética
13.
High Alt Med Biol ; 24(2): 139-143, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37134197

RESUMO

Pühringer, Reinhard, Martina Muckenthaler, and Martin Burtscher. Association between ferritin levels and altitude-dependent cardiorespiratory fitness in mountain guides. High Alt Med Biol. 24:139-143, 2023. Background: Higher ferritin levels may be associated with lower cardiorespiratory fitness (CRF; i.e., maximal oxygen uptake, VO2max) and may represent early markers of cardiovascular risk but may also support high-altitude acclimatization. To evaluate these potential associations, data recordings from a large sample of male mountain guides have been analyzed. Methods: A total of 154 data sets (including anthropometric data, VO2max, blood lipids, hemoglobin, ferritin, and transferrin levels) of regularly physically active and well-acclimatized mountain guides were available for analyses. Participants performed equal incremental cycle ergometer tests to exhaustion at low (600 m) and (∼1 week later) at moderate altitude (2,000 m). Results: Ferritin levels were positively correlated with levels of hemoglobin (r = 0.29, p < 0.01), total cholesterol (r = 0.18, p < 0.05), triglycerides (r = 0.23, p < 0.01), and low-density lipoprotein (r = 0.22, p < 0.01), and negatively with high-density lipoprotein levels (r = -0.16, p < 0.05) and also with baseline (taken at low altitude) VO2max values (r = -0.19, p < 0.05). In contrast, higher ferritin levels were associated with less VO2max decline from low-to-moderate altitude (r = 0.26, p < 0.01). Conclusion: Higher ferritin levels in male mountain guides are weakly associated with lower CRF and higher prevalence of cardiovascular risk factors but with slightly less reduction in VO2max when acutely exposed to moderate altitude. The clinical relevance of these observations needs further investigation.


Assuntos
Altitude , Aptidão Cardiorrespiratória , Humanos , Masculino , Triglicerídeos , Ferritinas , Hemoglobinas , Consumo de Oxigênio
14.
Hemasphere ; 7(4): e854, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37038466

RESUMO

To compensate for decreased oxygen partial pressure, high-altitude residents increase hemoglobin concentrations [Hb]. The elevation varies between world regions, posing problems in defining cutoff values for anemia or polycythemia. The currently used altitude adjustments (World Health Organization [WHO]), however, do not account for regional differences. Data from The Demographic and Health Survey (DHS) Program were analyzed from 32 countries harboring >4% of residents at altitudes above 1000 m. [Hb]-increase, (ΔHb/km altitude) was calculated by linear regression analysis. Tables show 95% reference intervals (RIs) for different altitude ranges, world regions, and age groups. The prevalence of anemia and polycythemia was calculated using regressions in comparison to WHO adjustments. The most pronounced Δ[Hb]/km was found in East Africans and South Americans while [Hb] increased least in South/South-East Asia. In African regions and Middle East, [Hb] was decreased in some altitude regions showing inconsistent changes in different age groups. Of note, in all regions, the Δ[Hb]/km was lower in children than in adults, and in the Middle East, it was even negative. Overall, the Δ[Hb]/km from our analysis differed from the region-independent adjustments currently suggested by the WHO resulting in a lower anemia prevalence at very high altitudes. The distinct patterns of Δ[Hb] with altitude in residents from different world regions imply that one single, region-independent correction factor for altitude is not be applicable for diagnosing abnormal [Hb]. Therefore, we provide regression coefficients and reference-tables that are specific for world regions and altitude ranges to improve diagnosing abnormal [Hb].

15.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G389-G403, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36881564

RESUMO

Newborns with FATP4 mutations exhibit ichthyosis prematurity syndrome (IPS), and adult patients show skin hyperkeratosis, allergies, and eosinophilia. We have previously shown that the polarization of macrophages is altered by FATP4 deficiency; however, the role of myeloid FATP4 in the pathogenesis of nonalcoholic steatohepatitis (NASH) is not known. We herein phenotyped myeloid-specific Fatp4-deficient (Fatp4M-/-) mice under chow and high-fat, high-cholesterol (HFHC) diet. Bone-marrow-derived macrophages (BMDMs) from Fatp4M-/- mice showed significant reduction in cellular sphingolipids in males and females, and additionally phospholipids in females. BMDMs and Kupffer cells from Fatp4M-/- mice exhibited increased LPS-dependent activation of proinflammatory cytokines and transcription factors PPARγ, CEBPα, and p-FoxO1. Correspondingly, these mutants under chow diet displayed thrombocytopenia, splenomegaly, and elevated liver enzymes. After HFHC feeding, Fatp4M-/- mice showed increased MCP-1 expression in livers and subcutaneous fat. Plasma MCP-1, IL4, and IL13 levels were elevated in male and female mutants, and female mutants additionally showed elevation of IL5 and IL6. After HFHC feeding, male mutants showed an increase in hepatic steatosis and inflammation, whereas female mutants showed a greater severity in hepatic fibrosis associated with immune cell infiltration. Thus, myeloid-FATP4 deficiency led to steatotic and inflammatory NASH in males and females, respectively. Our work offers some implications for patients with FATP4 mutations and also highlights considerations in the design of sex-targeted therapies for NASH treatment.NEW & NOTEWORTHY FATP4 deficiency in BMDMs and Kupffer cells led to increased proinflammatory response. Fatp4M-/- mice displayed thrombocytopenia, splenomegaly, and elevated liver enzymes. In response to HFHC feeding, male mutants were prone to hepatic steatosis, whereas female mutants showed exaggerated fibrosis. Our study provides insights into a sex-dimorphic susceptibility to NASH by myeloid-FATP4 deficiency.


Assuntos
Proteínas de Transporte de Ácido Graxo , Hepatopatia Gordurosa não Alcoólica , Animais , Feminino , Masculino , Camundongos , Colesterol/metabolismo , Dieta Hiperlipídica , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Esplenomegalia/complicações , Esplenomegalia/metabolismo , Esplenomegalia/patologia
16.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986429

RESUMO

Mammalian cells require iron to satisfy their metabolic needs and to accomplish specialized functions, such as hematopoiesis, mitochondrial biogenesis, energy metabolism, or oxygen transport. Iron homeostasis is balanced by the interplay of proteins responsible for iron import, storage, and export. A misbalance of iron homeostasis may cause either iron deficiencies or iron overload diseases. The clinical work-up of iron dysregulation is highly important, as severe symptoms and pathologies may arise. Treating iron overload or iron deficiency is important to avoid cellular damage and severe symptoms and improve patient outcomes. The impressive progress made in the past years in understanding mechanisms that maintain iron homeostasis has already changed clinical practice for treating iron-related diseases and is expected to improve patient management even further in the future.

17.
Redox Biol ; 62: 102639, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958250

RESUMO

Despite a strong rationale for why cancer cells are susceptible to redox-targeting drugs, such drugs often face tumor resistance or dose-limiting toxicity in preclinical and clinical studies. An important reason is the lack of specific biomarkers to better select susceptible cancer entities and stratify patients. Using a large panel of lung cancer cell lines, we identified a set of "antioxidant-capacity" biomarkers (ACB), which were tightly repressed, partly by STAT3 and STAT5A/B in sensitive cells, rendering them susceptible to multiple redox-targeting and ferroptosis-inducing drugs. Contrary to expectation, constitutively low ACB expression was not associated with an increased steady state level of reactive oxygen species (ROS) but a high level of nitric oxide, which is required to sustain high replication rates. Using ACBs, we identified cancer entities with a high percentage of patients with favorable ACB expression pattern, making it likely that more responders to ROS-inducing drugs could be stratified for clinical trials.


Assuntos
Antioxidantes , Neoplasias Pulmonares , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Neoplasias Pulmonares/metabolismo , Oxirredução , Biomarcadores/metabolismo
18.
Nat Commun ; 14(1): 771, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774352

RESUMO

Glioblastoma, the most common and aggressive primary brain tumor type, is considered an immunologically "cold" tumor with sparse infiltration by adaptive immune cells. Immunosuppressive tumor-associated myeloid cells are drivers of tumor progression. Therefore, targeting and reprogramming intratumoral myeloid cells is an appealing therapeutic strategy. Here, we investigate a ß-cyclodextrin nanoparticle (CDNP) formulation encapsulating the Toll-like receptor 7 and 8 (TLR7/8) agonist R848 (CDNP-R848) to reprogram myeloid cells in the glioma microenvironment. We show that intravenous monotherapy with CDNP-R848 induces regression of established syngeneic experimental glioma, resulting in increased survival rates compared with unloaded CDNP controls. Mechanistically, CDNP-R848 treatment reshapes the immunosuppressive tumor microenvironment and orchestrates tumor clearing by pro-inflammatory tumor-associated myeloid cells, independently of T cells and NK cells. Using serial magnetic resonance imaging, we identify a radiomic signature in response to CDNP-R848 treatment and ultrasmall superparamagnetic iron oxide (USPIO) imaging reveals that immunosuppressive macrophage recruitment is reduced by CDNP-R848. In conclusion, CDNP-R848 induces tumor regression in experimental glioma by targeting blood-borne macrophages without requiring adaptive immunity.


Assuntos
Glioma , Nanopartículas , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Humanos , Adjuvantes Imunológicos , Glioma/tratamento farmacológico , Macrófagos , Linfócitos T , Receptor 7 Toll-Like/agonistas , Microambiente Tumoral , Receptor 8 Toll-Like/agonistas
19.
Nat Rev Endocrinol ; 19(5): 299-310, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36805052

RESUMO

Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.


Assuntos
Sobrecarga de Ferro , Ferro , Humanos , Ferro/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Sobrecarga de Ferro/diagnóstico , Sobrecarga de Ferro/genética
20.
J Exp Clin Cancer Res ; 42(1): 21, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639636

RESUMO

BACKGROUND: Characterization of clinical phenotypes in context with tumor and host genomic information can aid in the development of more effective and less toxic risk-adapted and targeted treatment strategies. To analyze the impact of therapy-related hyperbilirubinemia on treatment outcome and to identify contributing genetic risk factors of this well-recognized adverse effect we evaluated serum bilirubin levels in 1547 pediatric patients with acute lymphoblastic leukemia (ALL) and conducted a genome-wide association study (GWAS). PATIENTS AND METHODS: Patients were treated in multicenter trial AIEOP-BFM ALL 2000 for pediatric ALL. Bilirubin toxicity was graded 0 to 4 according to the Common Toxicity Criteria (CTC) of the National Cancer Institute. In the GWAS discovery cohort, including 650 of the 1547 individuals, genotype frequencies of 745,895 single nucleotide variants were compared between 435 patients with hyperbilirubinemia (CTC grades 1-4) during induction/consolidation treatment and 215 patients without it (grade 0). Replication analyses included 224 patients from the same trial. RESULTS: Compared to patients with no (grade 0) or moderate hyperbilirubinemia (grades 1-2) during induction/consolidation, patients with grades 3-4 had a poorer 5-year event free survival (76.6 ± 3% versus 87.7 ± 1% for grades 1-2, P = 0.003; 85.2 ± 2% for grade 0, P < 0.001) and a higher cumulative incidence of relapse (15.6 ± 3% versus 9.0 ± 1% for grades 1-2, P = 0.08; 11.1 ± 1% for grade 0, P = 0.007). GWAS identified a strong association of the rs6744284 variant T allele in the UGT1A gene cluster with risk of hyperbilirubinemia (allelic odds ratio (OR) = 2.1, P = 7 × 10- 8). TT-homozygotes had a 6.5-fold increased risk of hyperbilirubinemia (grades 1-4; 95% confidence interval (CI) = 2.9-14.6, P = 7 × 10- 6) and a 16.4-fold higher risk of grade 3-4 hyperbilirubinemia (95% CI 6.1-43.8, P = 2 × 10- 8). Replication analyses confirmed these associations with joint analysis yielding genome-wide significance (allelic OR = 2.1, P = 6 × 10- 11; 95% CI 1.7-2.7). Moreover, rs6744284 genotypes were strongly linked to the Gilbert's syndrome-associated UGT1A1*28/*37 allele (r2 = 0.70), providing functional support for study findings. Of clinical importance, the rs6744284 TT genotype counterbalanced the adverse prognostic impact of high hyperbilirubinemia on therapy outcome. CONCLUSIONS: Chemotherapy-related hyperbilirubinemia is a prognostic factor for treatment outcome in pediatric ALL and genetic variation in UGT1A aids in predicting the clinical impact of hyperbilirubinemia. TRIAL REGISTRATION: http://www. CLINICALTRIALS: gov ; #NCT00430118.


Assuntos
Estudo de Associação Genômica Ampla , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Bilirrubina/uso terapêutico , Hiperbilirrubinemia/induzido quimicamente , Hiperbilirrubinemia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Resultado do Tratamento , Criança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA