Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 10: 1027, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139184

RESUMO

Management of pain in the treatment of rheumatoid arthritis (RA) is a priority that is not fully addressed by the conventional therapies. In the present study, we evaluated the efficacy of cannabinoid receptor 2 (CB2) agonist JWH-015 using RA synovial fibroblasts (RASFs) obtained from patients diagnosed with RA and in a rat adjuvant-induced arthritis (AIA) model of RA. Pretreatment of human RASFs with JWH-015 (10-20 µM) markedly inhibited the ability of pro-inflammatory cytokine interleukin-1ß (IL-1ß) to induce production of IL-6 and IL-8 and cellular expression of inflammatory cyclooxygenase-2 (COX-2). JWH-015 was effective in reducing IL-1ß-induced phosphorylation of TAK1 (Thr184/187) and JNK/SAPK in human RASFs. While the knockdown of CB2 in RASFs using siRNA method reduced IL-1ß-induced inflammation, JWH-015 was still effective in eliciting its anti-inflammatory effects despite the absence of CB2, suggesting the role of non-canonical or an off-target receptor. Computational studies using molecular docking and molecular dynamics simulations showed that JWH-105 favorably binds to glucocorticoid receptor (GR) with the binding pose and interactions similar to its well-known ligand dexamethasone. Furthermore, knockdown of GR using siRNA abrogated JWH-015's ability to reduce IL-1ß-induced IL-6 and IL-8 production. In vivo, administration of JWH-015 (5 mg/kg, daily i.p. for 7 days at the onset of arthritis) significantly ameliorated AIA in rats. Pain assessment studies using von Frey method showed a marked antinociception in AIA rats treated with JWH-015. In addition, JWH-015 treatment inhibited bone destruction as evident from micro-CT scanning and bone analysis on the harvested joints and modulated serum RANKL and OPG levels. Overall, our findings suggest that CB2 agonist JWH-015 elicits anti-inflammatory effects partly through GR. This compound could further be tested as an adjunct therapy for the management of pain and tissue destruction as a non-opioid for RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Fibroblastos/imunologia , Indóis/farmacologia , Interleucina-1beta/imunologia , Receptor CB2 de Canabinoide/agonistas , Receptores de Esteroides/imunologia , Membrana Sinovial/imunologia , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Artrite Experimental/patologia , Feminino , Fibroblastos/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Ratos , Ratos Endogâmicos Lew , Receptor CB2 de Canabinoide/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Membrana Sinovial/patologia
2.
Biomaterials ; 32(36): 9594-601, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21944828

RESUMO

Fibrin Pad is a hemostatic pad designed to control surgical-related bleeding. It consists of a fully absorbable composite matrix scaffold coated with human-derived active biologics that immediately form a fibrin clot upon contact with targeted bleeding surfaces. Studies were conducted to investigate the effect of Fibrin Pad and its biologics-free composite matrix component (Matrix) on the wound healing process in in vitro and in vivo models. Fibrin Pad was evaluated in solid organ, soft tissue defects, and subcutaneous tissues. Immunocompromised rodents were used to avoid xeno-mediated responses. Extracts created from both materials were evaluated for biological activity using in vitro cell culture assays. Neither Fibrin Pad nor Matrix alone showed any inhibition of the wound healing of treated defect sites. An apparent accelerated healing was noted in the soft tissue and subcutaneous tissue defects with Fibrin Pad as compared to Matrix. Both materials showed desirable properties associated with tissue scaffolds. The in vitro study results show that Fibrin Pad extract can induce dose-dependent increases in fibroblast proliferation and migration. These studies confirm that the biologic components of Fibrin Pad can enhance wound healing processes in in vitro assays and fully support wound healing at the site of in vivo application.


Assuntos
Fibrina/farmacologia , Hemostáticos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Nádegas/patologia , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Imuno-Histoquímica , Implantes Experimentais , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos SCID , Músculos/efeitos dos fármacos , Músculos/patologia , Ratos , Ratos Nus , Tela Subcutânea/irrigação sanguínea , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/patologia
3.
Biomaterials ; 31(13): 3649-56, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20144845

RESUMO

Many surgical methods and hemostatic agents can be used to achieve and maintain hemostasis in surgical fields. Numerous clinical situations exist where current treatment modalities are neither effective nor practical. Assessment of new hemostats primarily targets efficacy. However, the biocompatibility and healing properties associated with hemostats are crucial for regulatory approval and product acceptance. Standard biocompatibility and healing studies may not be appropriate for hemostats containing active biologics. Liver defects in NTac:NIH-Whn (athymic) and Sprague Dawley Outbred (immunocompetent) rats were treated with Fibrin Pad (absorbable matrix containing human-derived biologics) or the matrix only. Defects were evaluated at 14 and 28 days post-implantation. As expected, Fibrin Pad in immunocompetent rats induced a cellular immune response. Unexpectedly, biologically significant decreases in healing, material absorption, and local fibrin degradation were also present. Evaluation of Fibrin Pad in immunocompetent animal models must consider potentially significant alterations in healing, material absorption, and local fibrin degradation, in addition to the expected immune response; none of which may be relevant when Fibrin Pad is used in the clinical setting. These considerations are essential when standard efficacy and biocompatibility studies assessing Fibrin Pad are submitted for regulatory consideration or utilized as pre-clinical translational studies.


Assuntos
Celulose/química , Hemostáticos/farmacologia , Imunocompetência , Fígado/fisiopatologia , Poliglactina 910/química , Animais , Hemostáticos/química , Imunidade Celular , Oxirredução , Ratos , Ratos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA