Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(608)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433637

RESUMO

Therapeutic approaches are needed to promote T cell-mediated destruction of poorly immunogenic, "cold" tumors typically associated with minimal response to immune checkpoint blockade (ICB) therapy. Bispecific T cell engager (BiTE) molecules induce redirected lysis of cancer cells by polyclonal T cells and have demonstrated promising clinical activity against solid tumors in some patients. However, little is understood about the key factors that govern clinical responses to these therapies. Using an immunocompetent mouse model expressing a humanized CD3ε chain (huCD3e mice) and BiTE molecules directed against mouse CD19, mouse CLDN18.2, or human EPCAM antigens, we investigated the pharmacokinetic and pharmacodynamic parameters and immune correlates associated with BiTE efficacy across multiple syngeneic solid-tumor models. These studies demonstrated that pretreatment tumor-associated T cell density is a critical determinant of response to BiTE therapy, identified CD8+ T cells as important targets and mediators of BiTE activity, and revealed an antagonistic role for CD4+ T cells in BiTE efficacy. We also identified therapeutic combinations, including ICB and 4-1BB agonism, that synergized with BiTE treatment in poorly T cell-infiltrated, immunotherapy-refractory tumors. In these models, BiTE efficacy was dependent on local expansion of tumor-associated CD8+ T cells, rather than their recruitment from circulation. Our findings highlight the relative contributions of baseline T cell infiltration, local T cell proliferation, and peripheral T cell trafficking for BiTE molecule-mediated efficacy, identify combination strategies capable of overcoming resistance to BiTE therapy, and have clinical relevance for the development of BiTE and other T cell engager therapies.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Animais , Anticorpos Biespecíficos/uso terapêutico , Antígenos CD19 , Complexo CD3 , Linfócitos T CD8-Positivos , Claudinas , Humanos , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico
2.
Mol Cancer Ther ; 20(5): 925-933, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33632870

RESUMO

AMG 596 is a bispecific T-cell engager (BiTE) immuno-oncology therapy in clinical development for treatment of glioblastoma multiforme (GBM), the most common primary brain tumor in adults with limited therapeutic options. AMG 596 is composed of two single-chain variable fragments that simultaneously bind to the tumor-specific antigen, EGFR variant III (EGFRvIII), on GBM cells and to CD3 on T cells, thereby activating T cells to proliferate and secrete cytotoxic substances that induce lysis of the bound tumor cell. T-cell-redirected lysis by AMG 596 is very potent; in vitro studies revealed EC50 values in the low picomolar range, and in vivo studies showed that AMG 596 treatment significantly increased the overall survival of mice bearing EGFRvIII-expressing orthotopic tumors. In addition, AMG 596 activity is highly specific; no AMG 596-induced T-cell activity can be observed in assays with EGFRvIII-negative GBM cells, and no signs of toxicity and activity were observed in cynomolgus monkeys, which lack expression of EGFRvIII on normal tissues. With EGFRvIII-expressing GBM cells, we showed shedding of EGFRvIII-containing membrane vesicles, followed by vesicle uptake and EGFRvIII cell surface presentation by EGFRvIII noncoding GBM cells. Cell membrane presentation of EGFRvIII following microvesicle transfer allows engagement by AMG 596, resulting in T-cell activation and T-cell-dependent lysis of GBM cells. Together, these data show a compelling preclinical efficacy and safety profile of AMG 596, supporting its development as a novel immunotherapy for treatment of GBM.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Imunoterapia/métodos , Animais , Anticorpos Biespecíficos/farmacologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Receptores ErbB , Glioblastoma/patologia , Humanos , Camundongos
3.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29720517

RESUMO

Today's gold standard in HIV therapy is combined antiretroviral therapy (cART). It requires strict adherence by patients and lifelong medication, which can lower the viral load below detection limits and prevent HIV-associated immunodeficiency but cannot cure patients. The bispecific T cell-engaging (BiTE) antibody technology has demonstrated long-term relapse-free outcomes in patients with relapsed and refractory acute lymphocytic leukemia. Here, we generated BiTE antibody constructs that target the HIV-1 envelope protein gp120 (HIV gp120) using either the scFv B12 or VRC01, the first two extracellular domains (1 + 2) of human CD4 alone or joined to the single chain variable fragment (scFv) of the antibody 17b fused to an anti-human CD3ε scFv. These engineered human BiTE antibody constructs showed engagement of T cells for redirected lysis of HIV gp120-transfected CHO cells. Furthermore, they substantially inhibited HIV-1 replication in peripheral blood mononuclear cells (PBMCs) as well as in macrophages cocultured with autologous CD8+ T cells, the most potent being the human CD4(1 + 2) BiTE [termed CD(1 + 2) h BiTE] antibody construct and the CD4(1 + 2)L17b BiTE antibody construct. The CD4(1 + 2) h BiTE antibody construct promoted HIV infection of human CD4-/CD8+ T cells. In contrast, the neutralizing B12 and the VRC01 BiTE antibody constructs, as well as the CD4(1 + 2)L17b BiTE antibody construct, did not. Thus, BiTE antibody constructs targeting HIV gp120 are very promising for constraining HIV and warrant further development as novel antiviral therapy with curative potential.IMPORTANCE HIV is a chronic infection well controlled with the current cART. However, we lack a cure for HIV, and the HIV pandemic goes on. Here, we showed in vitro and ex vivo that a BiTE antibody construct targeting HIV gp120 resulted in substantially reduced HIV replication. In addition, these BiTE antibody constructs display efficient killing of gp120-expressing cells and inhibited replication in ex vivo HIV-infected PBMCs or macrophages. We believe that BiTE antibody constructs recognizing HIV gp120 could be a very valuable strategy for a cure of HIV in combination with cART and compounds which reverse latency.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antivirais/uso terapêutico , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/tratamento farmacológico , HIV-1/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Biespecíficos/imunologia , Células CHO , Cricetinae , Cricetulus , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Humanos , Imunoterapia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Ligação Proteica , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia
4.
Antiviral Res ; 141: 155-164, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28257797

RESUMO

The ectodomain of the influenza A matrix protein 2 (M2e) is highly conserved amongst all influenza virus A subtypes. M2e is present on the surface of influenza A virus-infected cells, and therefore a suitable target for broadly protective therapies. We designed bispecific T cell engaging (BiTE®) antibody constructs specific for M2e by genetically fusing a single chain variable fragment (scFv) derived from an M2e-specific murine monoclonal antibody with a CD3ɛ-specific scFv. These so-called FLU BiTE® antibody constructs selectively mediate T cell dependent lysis of M2-expressing and influenza A virus infected cells and protect BALB/c mice against challenge with different influenza A virus subtypes. By humanizing the M2e-binding scFv, we generated human-like FLU BiTE® antibody constructs, with increased in vitro cytotoxic activity and in vivo protective capacity against influenza A virus infection. FLU BiTE® antibody constructs represent a promising new curative and prophylactic treatment option for influenza disease.


Assuntos
Anticorpos Biespecíficos/imunologia , Vírus da Influenza A/química , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Linfócitos T/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Antivirais/sangue , Testes Imunológicos de Citotoxicidade , Memória Imunológica , Vacinas contra Influenza/administração & dosagem , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA