Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Commun ; 15(1): 7772, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251587

RESUMO

Aneuploidy is a hallmark of human cancer, yet the molecular mechanisms to cope with aneuploidy-induced cellular stresses remain largely unknown. Here, we induce chromosome mis-segregation in non-transformed RPE1-hTERT cells and derive multiple stable clones with various degrees of aneuploidy. We perform a systematic genomic, transcriptomic and proteomic profiling of 6 isogenic clones, using whole-exome DNA, mRNA and miRNA sequencing, as well as proteomics. Concomitantly, we functionally interrogate their cellular vulnerabilities, using genome-wide CRISPR/Cas9 and large-scale drug screens. Aneuploid clones activate the DNA damage response and are more resistant to further DNA damage induction. Aneuploid cells also exhibit elevated RAF/MEK/ERK pathway activity and are more sensitive to clinically-relevant drugs targeting this pathway, and in particular to CRAF inhibition. Importantly, CRAF and MEK inhibition sensitize aneuploid cells to DNA damage-inducing chemotherapies and to PARP inhibitors. We validate these results in human cancer cell lines. Moreover, resistance of cancer patients to olaparib is associated with high levels of RAF/MEK/ERK signaling, specifically in highly-aneuploid tumors. Overall, our study provides a comprehensive resource for genetically-matched karyotypically-stable cells of various aneuploidy states, and reveals a therapeutically-relevant cellular dependency of aneuploid cells.


Assuntos
Aneuploidia , Dano ao DNA , Sistema de Sinalização das MAP Quinases , Ftalazinas , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ftalazinas/farmacologia , Linhagem Celular Tumoral , Piperazinas/farmacologia , Quinases raf/metabolismo , Quinases raf/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Sistemas CRISPR-Cas , Linhagem Celular , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Resistencia a Medicamentos Antineoplásicos/genética
2.
Cancer Discov ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39247952

RESUMO

Aneuploidy results in a stoichiometric imbalance of protein complexes that jeopardizes cellular fitness. Aneuploid cells thus need to compensate for the imbalanced DNA levels by regulating their RNA and protein levels, but the underlying molecular mechanisms remain unknown. Here, we dissected multiple diploid vs. aneuploid cell models. We found that aneuploid cells cope with transcriptional burden by increasing several RNA degradation pathways, and are consequently more sensitive to the perturbation of RNA degradation. At the protein level, aneuploid cells mitigate proteotoxic stress by reducing protein translation and increasing protein degradation, rendering them more sensitive to proteasome inhibition. These findings were recapitulated across hundreds of human cancer cell lines and primary tumors, and aneuploidy levels were significantly associated with the response of multiple myeloma patients to proteasome inhibitors. Aneuploid cells are therefore preferentially dependent on several key nodes along the gene expression process, creating clinically-actionable vulnerabilities in aneuploid cells.

3.
Proc Natl Acad Sci U S A ; 121(19): e2319211121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696467

RESUMO

Gene expression varies between individuals and corresponds to a key step linking genotypes to phenotypes. However, our knowledge regarding the species-wide genetic control of protein abundance, including its dependency on transcript levels, is very limited. Here, we have determined quantitative proteomes of a large population of 942 diverse natural Saccharomyces cerevisiae yeast isolates. We found that mRNA and protein abundances are weakly correlated at the population gene level. While the protein coexpression network recapitulates major biological functions, differential expression patterns reveal proteomic signatures related to specific populations. Comprehensive genetic association analyses highlight that genetic variants associated with variation in protein (pQTL) and transcript (eQTL) levels poorly overlap (3%). Our results demonstrate that transcriptome and proteome are governed by distinct genetic bases, likely explained by protein turnover. It also highlights the importance of integrating these different levels of gene expression to better understand the genotype-phenotype relationship.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteoma , Locos de Características Quantitativas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Variação Genética , Proteômica/métodos , Genótipo , Fenótipo , Perfilação da Expressão Gênica/métodos
4.
Nature ; 630(8015): 149-157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778096

RESUMO

Accessing the natural genetic diversity of species unveils hidden genetic traits, clarifies gene functions and allows the generalizability of laboratory findings to be assessed. One notable discovery made in natural isolates of Saccharomyces cerevisiae is that aneuploidy-an imbalance in chromosome copy numbers-is frequent1,2 (around 20%), which seems to contradict the substantial fitness costs and transient nature of aneuploidy when it is engineered in the laboratory3-5. Here we generate a proteomic resource and merge it with genomic1 and transcriptomic6 data for 796 euploid and aneuploid natural isolates. We find that natural and lab-generated aneuploids differ specifically at the proteome. In lab-generated aneuploids, some proteins-especially subunits of protein complexes-show reduced expression, but the overall protein levels correspond to the aneuploid gene dosage. By contrast, in natural isolates, more than 70% of proteins encoded on aneuploid chromosomes are dosage compensated, and average protein levels are shifted towards the euploid state chromosome-wide. At the molecular level, we detect an induction of structural components of the proteasome, increased levels of ubiquitination, and reveal an interdependency of protein turnover rates and attenuation. Our study thus highlights the role of protein turnover in mediating aneuploidy tolerance, and shows the utility of exploiting the natural diversity of species to attain generalizable molecular insights into complex biological processes.


Assuntos
Aneuploidia , Complexo de Endopeptidases do Proteassoma , Proteólise , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Mecanismo Genético de Compensação de Dose , Variação Genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteoma/metabolismo , Proteoma/genética , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação , Perfilação da Expressão Gênica , Genômica
5.
Cell ; 186(9): 2018-2034.e21, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37080200

RESUMO

Functional genomic strategies have become fundamental for annotating gene function and regulatory networks. Here, we combined functional genomics with proteomics by quantifying protein abundances in a genome-scale knockout library in Saccharomyces cerevisiae, using data-independent acquisition mass spectrometry. We find that global protein expression is driven by a complex interplay of (1) general biological properties, including translation rate, protein turnover, the formation of protein complexes, growth rate, and genome architecture, followed by (2) functional properties, such as the connectivity of a protein in genetic, metabolic, and physical interaction networks. Moreover, we show that functional proteomics complements current gene annotation strategies through the assessment of proteome profile similarity, protein covariation, and reverse proteome profiling. Thus, our study reveals principles that govern protein expression and provides a genome-spanning resource for functional annotation.


Assuntos
Proteoma , Proteômica , Proteômica/métodos , Proteoma/metabolismo , Genômica/métodos , Genoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
EMBO Mol Med ; 14(11): e16643, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36169042

RESUMO

The rapid rise of monkeypox (MPX) cases outside previously endemic areas prompts for a better understanding of the disease. We studied the plasma proteome of a group of MPX patients with a similar infection history and clinical manifestation typical for the current outbreak. We report that MPX in this case series is associated with a strong plasma proteomic response among nutritional and acute phase response proteins. Moreover, we report a correlation between plasma proteins and disease severity. Contrasting the MPX host response with that of COVID-19, we find a range of similarities, but also important differences. For instance, CFHR1 is induced in COVID-19, but suppressed in MPX, reflecting the different roles of the complement system in the two infectious diseases. Of note, the spatial overlap in response proteins suggested that a COVID-19 biomarker panel assay could be repurposed for MPX. Applying a targeted protein panel assay provided encouraging results and distinguished MPX cases from healthy controls. Hence, our results provide a first proteomic characterization of the MPX human host response and encourage further research on protein-panel assays in emerging infectious diseases.


Assuntos
COVID-19 , Mpox , Humanos , Mpox/epidemiologia , Monkeypox virus/fisiologia , Proteômica , Pesquisa
8.
PLoS Pathog ; 17(8): e1009824, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398933

RESUMO

The herpes simplex virus (HSV)-1 protein pUL21 is essential for efficient virus replication and dissemination. While pUL21 has been shown to promote multiple steps of virus assembly and spread, the molecular basis of its function remained unclear. Here we identify that pUL21 is a virus-encoded adaptor of protein phosphatase 1 (PP1). pUL21 directs the dephosphorylation of cellular and virus proteins, including components of the viral nuclear egress complex, and we define a conserved non-canonical linear motif in pUL21 that is essential for PP1 recruitment. In vitro evolution experiments reveal that pUL21 antagonises the activity of the virus-encoded kinase pUS3, with growth and spread of pUL21 PP1-binding mutant viruses being restored in adapted strains where pUS3 activity is disrupted. This study shows that virus-directed phosphatase activity is essential for efficient herpesvirus assembly and spread, highlighting the fine balance between kinase and phosphatase activity required for optimal virus replication.


Assuntos
Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Replicação Viral , Animais , Chlorocebus aethiops , Células HEK293 , Herpesvirus Humano 1/enzimologia , Humanos , Monoéster Fosfórico Hidrolases/genética , Células Vero , Proteínas Virais/genética , Liberação de Vírus
9.
Cell Rep ; 33(1): 108235, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027661

RESUMO

Herpesviruses are ubiquitous in the human population and they extensively remodel the cellular environment during infection. Multiplexed quantitative proteomic analysis over the time course of herpes simplex virus 1 (HSV-1) infection was used to characterize changes in the host-cell proteome and the kinetics of viral protein production. Several host-cell proteins are targeted for rapid degradation by HSV-1, including the cellular trafficking factor Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC). We show that the poorly characterized HSV-1 pUL56 directly binds GOPC, stimulating its ubiquitination and proteasomal degradation. Plasma membrane profiling reveals that pUL56 mediates specific changes to the cell-surface proteome of infected cells, including loss of interleukin-18 (IL18) receptor and Toll-like receptor 2 (TLR2), and that cell-surface expression of TLR2 is GOPC dependent. Our study provides significant resources for future investigation of HSV-host interactions and highlights an efficient mechanism whereby a single virus protein targets a cellular trafficking factor to modify the surface of infected cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Herpesvirus Humano 1/metabolismo , Proteômica/métodos , Células HEK293 , Humanos , Transfecção
10.
Traffic ; 18(1): 44-57, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27813245

RESUMO

Short peptide motifs in unstructured regions of clathrin-adaptor proteins recruit clathrin to membranes to facilitate post-Golgi membrane transport. Three consensus clathrin-binding peptide sequences have been identified and structural studies show that each binds distinct sites on the clathrin heavy chain N-terminal domain (NTD). A fourth binding site for adaptors on NTD has been functionally identified but not structurally characterised. We have solved high resolution structures of NTD bound to peptide motifs from the cellular clathrin adaptors ß2 adaptin and amphiphysin plus a putative viral clathrin adaptor, hepatitis D virus large antigen (HDAg-L). Surprisingly, with each peptide we observe simultaneous peptide binding at multiple sites on NTD and viral peptides binding to the same sites as cellular peptides. Peptides containing clathrin-box motifs (CBMs) with the consensus sequence LΦxΦ[DE] bind at the 'arrestin box' on NTD, between ß-propeller blades 4 and 5, which had previously been thought to bind a distinct consensus sequence. Further, we structurally define the fourth peptide binding site on NTD, which we term the Royle box. In vitro binding assays show that clathrin is more readily captured by cellular CBMs than by HDAg-L, and site-directed mutagenesis confirms that multiple binding sites on NTD contribute to efficient capture by CBM peptides.


Assuntos
Sítios de Ligação/fisiologia , Cadeias Pesadas de Clatrina/metabolismo , Peptídeos/metabolismo , Ligação Proteica/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Antígenos da Hepatite delta/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo
11.
Chem Phys Lipids ; 179: 57-63, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24252639

RESUMO

Interactions of cytochrome c (cyt c) with cardiolipin (CL) play a critical role in early stages of apoptosis. Upon binding to CL, cyt c undergoes changes in secondary and tertiary structure that lead to a dramatic increase in its peroxidase activity. Insertion of the protein into membranes, insertion of CL acyl chains into the protein interior, and extensive unfolding of cyt c after adsorption to the membrane have been proposed as possible modes for interaction of cyt c with CL. Dissociation of Met80 is accompanied by opening of the heme crevice and binding of another heme ligand. Fluorescence studies have revealed conformational heterogeneity of the lipid-bound protein ensemble with distinct polypeptide conformations that vary in the degree of protein unfolding. We correlate these recent findings to other biophysical observations and rationalize the role of experimental conditions in defining conformational properties and peroxidase activity of the cyt c ensemble. Latest time-resolved studies propose the trigger and the sequence of cardiolipin-induced structural transitions of cyt c.


Assuntos
Cardiolipinas/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Animais , Cardiolipinas/química , Permeabilidade da Membrana Celular , Radicais Livres/metabolismo , Heme/metabolismo , Humanos , Ligação Proteica
12.
J Phys Chem B ; 117(42): 12878-86, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23713573

RESUMO

Interactions of cytochrome c (cyt c) with a unique mitochondrial glycerophospholipid cardiolipin (CL) are relevant for the protein's function in oxidative phosphorylation and apoptosis. Binding to CL-containing membranes promotes cyt c unfolding and dramatically enhances the protein's peroxidase activity, which is critical in early stages of apoptosis. We have employed a collection of seven dansyl variants of horse heart cyt c to probe the sequence of steps in this functional transformation. Kinetic measurements have unraveled four distinct processes during CL-induced cyt c unfolding: rapid protein binding to CL liposomes; rearrangements of protein substructures with small unfolding energies; partial insertion of the protein into the lipid bilayer; and extensive protein restructuring leading to "open" extended structures. While early rearrangements depend on a hierarchy of foldons in the native structure, the later process of large-scale unfolding is influenced by protein interactions with the membrane surface. The opening of the cyt c structure exposes the heme group, which enhances the protein's peroxidase activity and also frees the C-terminal helix to aid in the translocation of the protein through CL membranes.


Assuntos
Cardiolipinas/química , Citocromos c/metabolismo , Peroxidase/metabolismo , Animais , Cardiolipinas/metabolismo , Citocromos c/química , Heme/química , Heme/metabolismo , Cavalos , Cinética , Lipossomos/química , Lipossomos/metabolismo , Miocárdio/metabolismo , Peroxidase/química , Fosfatidilcolinas/química , Ligação Proteica , Desnaturação Proteica
13.
Biochemistry ; 52(6): 993-5, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23331169

RESUMO

Using a collection of dye-labeled cytochrome c (cyt c) variants, we identify transformations of the heterogeneous cardiolipin (CL)-bound cyt c ensemble with added ATP. Distributions of dye-to-heme distances P(r) from time-resolved fluorescence resonance energy transfer show that ATP decreases the population of largely unfolded cyt c conformers, but its effects are distinct from those of a simple salt. The high peroxidase activity of CL-bound cyt c with added ATP suggests binding interactions that favor protein structures with the open heme pocket. Although ATP weakens cyt c-CL binding interactions, it also boosts the apoptosis-relevant peroxidase activity of CL-bound cyt c.


Assuntos
Trifosfato de Adenosina/metabolismo , Cardiolipinas/metabolismo , Citocromos c/química , Heme/metabolismo , Animais , Apoptose , Citocromos c/metabolismo , Cavalos , Lipossomos , Modelos Moleculares , Oxirredução , Peroxidase/metabolismo , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência
14.
J Am Chem Soc ; 134(45): 18713-23, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23066867

RESUMO

Interactions of cytochrome c (cyt c) with cardiolipin (CL) partially unfold the protein, activating its peroxidase function, a critical event in the execution of apoptosis. However, structural features of the altered protein species in the heterogeneous ensemble are difficult to probe with ensemble averaging. Analyses of the dye-to-heme distance distributions P(r) from time-resolved FRET (TR-FRET) have uncovered two distinct types of CL-bound cyt c conformations, extended and compact. We have combined TR-FRET, fluorescence correlation spectroscopy (FCS), and biolayer interferometry to develop a systematic understanding of the functional partitioning between the two conformations. The two subpopulations are in equilibrium with each other, with a submillisecond rate of conformational exchange reflecting the protein folding into a compact non-native state, as well as protein interactions with the lipid surface. Electrostatic interactions with the negatively charged lipid surface that correlate with physiologically relevant changes in CL concentrations strongly affect the kinetics of cyt c binding and conformational exchange. A predominantly peripheral binding mechanism, rather than deep protein insertion into the membrane, provides a rationale for the general denaturing effect of the CL surface and the large-scale protein unfolding. These findings closely relate to cyt c folding dynamics and suggest a general strategy for extending the time window in monitoring the kinetics of folding.


Assuntos
Cardiolipinas/química , Citocromos c/química , Animais , Transferência Ressonante de Energia de Fluorescência , Coração , Cavalos , Interferometria , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA