RESUMO
This study examines the microstructural characteristics and corrosion resistance of super duplex stainless steel (SDSS) produced through laser powder bed fusion (LPBF). The analysis shows that the as-printed samples mainly exhibit a ferritic microstructure, which is due to the fast-cooling rates of the LPBF technique. X-ray and microstructure analyses reveal the presence of minor austenite phases in the ferritic matrix. The process of solution annealing led to a more balanced microstructure. Analyses of corrosion resistance, such as potentiodynamic polarization tests and EIS, indicate that heat treatment has a significant impact on the corrosion behavior of SDSS. Solution annealing and stress relieving at 400 °C for 1 h can improve corrosion resistance by increasing polarization resistance and favorable EIS parameters. However, stress relieving at 550 °C for 5 h may reduce the material's corrosion resistance due to the formation of chromium nitride. Therefore, stress relieving at 400 °C for 1 h is a practical method to significantly enhance the corrosion resistance of LPBF-printed SDSS. This method offers a balance between microstructural integrity and material performance.
RESUMO
The Coronavirus Disease 2019 (COVID-19) pandemic has induced a critical supply of personal protective equipment (PPE) especially N95 respirators. Utilizing respirator decontamination procedures to reduce the pathogen load of a contaminated N95 respirator can be a viable solution for reuse purposes. In this study, the efficiency of a novel hybrid respirator decontamination method of ultraviolet germicidal irradiation (UVGI) which utilizes ultraviolet-C (UV-C) rays coupled with microwave-generated steam (MGS) against feline coronavirus (FCoV) was evaluated. The contaminated 3M 1860 respirator pieces were treated with three treatments (UVGI-only, MGS-only, and Hybrid-UVGI + MGS) with variable time. The virucidal activity was evaluated using the TCID50 method. The comparison of decontamination efficiency of the treatments indicated that the hybrid method achieved at least a pathogen log reduction of 4 logs, faster than MGS and UVGI. These data recommend that the proposed hybrid decontamination system is more effective comparatively in achieving pathogen log reduction of 4 logs.