Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 18: 1025-1034, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585256

RESUMO

Purpose: Explore the median effective dose of ciprofol for inducing loss of consciousness in elderly patients and investigate how frailty influences the ED50 of ciprofol in elderly patients. Patients and Methods: A total of 26 non-frail patients and 28 frail patients aged 65-78 years, with BMI ranging from 15 to 28 kg/m2, and classified as ASA grade II or III were selected. Patients were divided into two groups according to frailty: non-frail patients (CFS<4), frail patients (CFS≥4). With an initial dose of 0.3 mg/kg for elderly non-frail patients and 0.25 mg/kg for elderly frail patients, using the up-and-down Dixon method, and the next patient's dose was dependent on the previous patient's response. Demographic information, heart rate (HR), oxygen saturation (SpO2), mean blood pressure (MBP), and bispectral index (BIS) were recorded every 30 seconds, starting from the initiation of drug administration and continuing up to 3 minutes post-administration. Additionally, the total ciprofol dosage during induction, occurrences of hypotension, bradycardia, respiratory depression, and injection pain were recorded. Results: The calculated ED50 (95% confidence interval [CI]) and ED95 (95% CI) values for ciprofol-induced loss of consciousness were as follows: 0.267 mg/kg (95% CI 0.250-0.284) and 0.301 mg/kg (95% CI 0.284-0.397) for elderly non-frail patients; and 0.263 mg/kg (95% CI 0.244-0.281) and 0.302 mg/kg (95% CI 0.283-0.412) for elderly frail patients. Importantly, no patients reported intravenous injection pain, required treatment for hypotension, or experienced significant bradycardia. Conclusion: Frailty among elderly patients does not exert a notable impact on the median effective dose of ciprofol for anesthesia induction. Our findings suggest that anesthesiologists may forego the necessity of dosage adjustments when administering ciprofol for anesthesia induction in elderly frail patients.


Assuntos
Anestesia , Fragilidade , Hipotensão , Idoso , Humanos , Fragilidade/tratamento farmacológico , Bradicardia/induzido quimicamente , Hipotensão/induzido quimicamente , Hipotensão/tratamento farmacológico , Dor , Inconsciência
2.
Food Chem ; 447: 139031, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513491

RESUMO

The present study was aimed to investigate the interactions between soybean protein isolate (SPI) with resveratrol (RESV) and lutein (LUT). The binding forces, molecular interactions and functional properties were explored by multi-spectroscopic analysis, molecular docking and functional property indexes between SPI and RESV/LUT. The RESV/LUT quenched SPI chromophore residues with static mechanism and the endothermic reaction. The SPI- RESV/LUT complexes were formed through hydrogen bond, electrostatic and hydrophobic interactions. Molecular docking confirmed van-der-Waals force as one of the important forces. The interaction of RESV/LUT led to SPI's secondary structure alterations with a decrease in α-helix and random coil and an increase in ß-sheet and ß-turns. RESV/LUT developed foaming and emulsifying properties of SPI and showed a significant decrease of the surface hydrophobicity with RESV/LUT concentrations increase attributed to SPI's partial unfolding. Our study exposed molecular mechanisms and confirmations to understand the interactions in protein- RESV/LUT complexes for protein industrial base promotion.


Assuntos
Proteínas de Soja , Proteínas de Soja/química , Simulação de Acoplamento Molecular , Estrutura Secundária de Proteína , Análise Espectral , Conformação Proteica em alfa-Hélice
3.
Compr Rev Food Sci Food Saf ; 23(1): e13286, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284581

RESUMO

Emerging nonthermal and thermal food processing technologies are a better alternative to conventional thermal processing techniques because they offer high-quality, minimally processed food. Texture is important in the food industry because it encompasses several product attributes and plays a vital role in consumer acceptance. Therefore, it is imperative to analyze the extent to which these technologies influence the textural attributes of food grains. Physical forces produced by cavitation are attributed to ultrasound treatment-induced changes in the conformational and structural properties of food proteins. Pulsed electric field treatment causes polarization of starch granules, damaging the dense outer layer of starch granules and decreasing the mechanical strength of starch. Prolonged radio frequency heating results in the denaturation of proteins and gelatinization of starch, thus reducing binding tendency during cooking. Microwave energy induces rapid removal of water from the product surface, resulting in lower bulk density, low shrinkage, and a porous structure. However, evaluating the influence of these techniques on food grain texture is difficult owing to differences in their primary operation mode, operating conditions, and equipment design. To maximize the advantages of nonthermal and thermal technologies, in-depth research should be conducted on their effects on the textural properties of different food grains while ensuring the selection of appropriate operating conditions for each food grain type. This article summarizes all recent developments in these emerging processing technologies for food grains, discusses their potential applications and drawbacks, and presents prospects for future developments in food texture enhancement.


Assuntos
Manipulação de Alimentos , Qualidade dos Alimentos , Manipulação de Alimentos/métodos , Culinária , Amido/química , Grão Comestível
4.
Food Res Int ; 177: 113917, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225152

RESUMO

This study aimed to screen peptides with saltiness-enhancing effects from enzymatic hydrolyzed Agaricus bisporus protein and quantify their salt-reduction. The saltiness evaluation standard curve was first established to evaluate salinity. The peptide fractions (U-1, U-2, and U-3) were obtained from enzymatic hydrolyzed Agaricus bisporus protein by ultrafiltration. Quantitative calculations showed that the U-2 fraction (200-2000 Da) had the strongest saltiness-enhancing effect, and its perceived saltiness in 50 mmol NaCl solution was 60.24 ± 0.10 mmol/L. The peptide sequences were identified by liquid chromatography/mass spectrometry (LC-MS/MS). Results suggested that the potential peptides with saltiness-enhancing effects were umami peptides. Molecular docking with the umami receptor T1R1/T1R3 revealed that the key amino acid residues were Asp82, Glu392, Glu270, and Asp269. Furthermore, peptide YDPNDPEK (976.4138 Da), DDWDEDAPR(1117.4312 Da), and DVPDGPPPE (1058.4668 Da) were synthesized for salt-reduction quantification. 0.4 % peptide YDPNDPEK in NaCl solution was found to have a salt-reduction of 30 %, which provided the basic theory and data for the salt-reduction of peptide in enzymatic hydrolyzed Agaricus bisporus protein.


Assuntos
Agaricus , Peptídeos , Cloreto de Sódio , Espectrometria de Massas em Tandem , Agaricus/enzimologia , Cromatografia Líquida , Simulação de Acoplamento Molecular , Peptídeos/química , Hidrolisados de Proteína , Cloreto de Sódio na Dieta
5.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37377348

RESUMO

Protein is one of the most important components of food which significantly contributes to the structure, functionality, and sensory properties which may affect consumer acceptability of processed products. Conventional thermal processing affects protein structure and induce undesirable degradation of food quality. This review provides an overview of emerging pretreatment and drying technologies (plasma treatment, ultrasound treatment, electrohydrodynamic, radio frequency, microwave, and superheated steam drying) in food processing by assessing protein structural changes to enhance functional and nutritional properties. In addition, mechanisms and principles of these modern technologies are described while challenges and opportunities for the development of these techniques in the drying process are also critically analyzed. Plasma discharges can lead to oxidative reactions and cross-linking of proteins that can change the structure of proteins. Microwave heating contributes to the occurrence of isopeptide or disulfide bonds which promotes α-helix and ß-turn formation. These emerging technologies can be adopted to improve protein surface by exposing more hydrophobic groups which restrict water interaction. It is expected that these innovative processing technologies should become a preferred choice in the food industry for better food quality. Moreover, there are some limitations for industrial scale application of these emerging technologies that need to be addressed.

6.
Food Chem ; 423: 136313, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182498

RESUMO

Antioxidant peptides obtained through enzymatic hydrolysis of food proteins exhibit a broad range of bioactivities both in vitro and in vivo models. The antioxidant peptides showed the potential to fight against the reactive oxygen species, free radicals and other pro-oxidative substances which are considered the source of various chronic diseases for humans. Both animals and plants have been recognized as natural protein sources and attracted much research interest over the synthetic ones in terms of safety. However, the main challenge remains to increase the antioxidant peptides yield, reduce the enzyme quantity and the reaction time. Consequently, different efficient and innovative food processing technologies such as thermal, ultrasound, microwave, high hydrostatic pressure, pulsed electric field, etc. have been developed and currently used to treat food proteins before (pretreatment) or during the enzymatic hydrolysis (assisted). Those technologies were found to significantly enhance the degree of hydrolysis and the production of substantial antioxidant peptides. These emerging technologies enhance the enzymatic hydrolysis by inducing protein denaturation/unfolding, and the enzymatic activation without altering their functional and nutritional properties. This review discusses the state of the art of thermal, ultrasound, high hydrostatic pressure, microwave, and pulsed electric field techniques, their applications while coupled with enzymatic hydrolysis, their comparison and potential challenges for the production of antioxidant peptides from food proteins.


Assuntos
Antioxidantes , Peptídeos , Animais , Humanos , Antioxidantes/química , Hidrólise , Peptídeos/química , Oxirredução , Espécies Reativas de Oxigênio
7.
Food Res Int ; 166: 112581, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914343

RESUMO

To understand the overall flavor of the dzo beef, fatty acids, volatile compounds and aroma profiles of dzo beef samples (raw beef (RB), broth (BT) and cooked beef (CB)) were investigated by head-space-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and gas chromatography-mass spectrometry (GC-MS). The fatty acid analysis showed a decrease in the ratio of polyunsaturated fatty acids, such as linoleic acid, which decreased from 2.60 % in RB to 0.51 % in CB. The principal component analysis (PCA) showed that HS-GC-IMS was able to distinguish different samples. A total of 19 characteristic compounds with odor activity value (OAV) > 1 were identified by gas chromatography-olfactometry (GC-O). Fruity, caramellic, fatty and fermented attributes were enhanced after stewing. Butyric acid and 4-methylphenol were responsible for the stronger off-odor in RB. 3-Hydroxy-2-butanone and 2,5-dimethyl-4-hydroxy-3(2H)-furanone with buttery and caramellic attributes were dominated in BT, while (E)-2-nonenal, (E,E)-2,4-decadienal and (E,E)-2,4-nonadienal prominently conferred fatty attribute on CB. Furthermore, anethole with anisic aroma was first identified in beef, which may be one of the typical chemical markers that distinguish dzo beef from other varieties.


Assuntos
Revelação , Compostos Orgânicos Voláteis , Animais , Bovinos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Tibet , Espectrometria de Mobilidade Iônica , Compostos Orgânicos Voláteis/análise
8.
Crit Rev Food Sci Nutr ; 63(19): 3452-3467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34652225

RESUMO

Dietary polyphenols with great antidiabetic effects are the most abundant components in edible products. Dietary polyphenols have attracted attention as dipeptidyl peptidase-IV (DPP-IV) inhibitors and indirectly improve insulin secretion. The DPP-IV inhibitory activities of dietary polyphenols depend on their structural diversity. Screening methods that can be used to rapidly and accurately identify potential polyphenol DPP-IV inhibitors are urgently needed. This review focuses on the relationship between the structures of dietary polyphenols and their DPP-IV inhibitory effects. Different characterization methods used for polyphenols as DPP-IV inhibitors have been summarized and compared. We conclude that the position and number of hydroxyl groups, methoxy groups, glycosylated groups, and the extent of conjugation influence the efficiency of inhibition of DPP-IV. Various combinations of methods, such as in-vitro enzymatic inhibition, ex-vivo/in-vivo enzymatic inhibition, cell-based in situ, and in-silico virtual screening, are used to evaluate the DPP-IV inhibitory effects of dietary polyphenols. Further investigations of polyphenol DPP-IV inhibitors will improve the bioaccessibility and bioavailability of these bioactive compounds. Exploration of (i) dietary polyphenols derived from multiple targets, that can prevent diabetes, and (ii) actual binding interactions via multispectral analysis, to understand the binding interactions in the complexes, is required.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Relação Estrutura-Atividade , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo
9.
Crit Rev Food Sci Nutr ; 63(15): 2521-2543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34515594

RESUMO

Cinnamaldehyde is an essential oil extracted from the leaves, bark, roots and flowers of cinnamon plants (genus Cinnamomum). Cinnamaldehyde has shown biological functions such as antioxidants, antimicrobials, anti-diabetic, anti-obesity and anti-cancer. However, poor solubility in water as well as molecular sensitivity to oxygen, light, and high temperature limit the direct application of cinnamaldehyde. Researchers are using different encapsulation techniques to maximize the potential biological functions of cinnamaldehyde. Different delivery systems such as liposomes, emulsions, biopolymer nanoparticles, complex coacervation, molecular inclusion, and spray drying have been developed for this purpose. The particle size and morphology, composition and physicochemical properties influence the performance of each delivery system. Consequently, the individual delivery system has its advantages and limitations for specific applications. Given the essential role of cinnamaldehyde in functional food and food preservation, appropriate approaches should be applied in the encapsulation and application of encapsulated cinnamaldehyde. This review systematically analyzes available encapsulation techniques for cinnamaldehyde in terms of their design, properties, advantages and limitations, and food application status. The information provided in this manuscript will assist in the development and widespread use of cinnamaldehyde-loaded particles in the food and beverage industries.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Óleos Voláteis/química , Cinnamomum zeylanicum/química , Acroleína/química
10.
Environ Sci Technol ; 56(23): 16546-16566, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36301703

RESUMO

The contamination of soil with organic pollutants has been accelerated by agricultural and industrial development and poses a major threat to global ecosystems and human health. Various chemical and physical techniques have been developed to remediate soils contaminated with organic pollutants, but challenges related to cost, efficacy, and toxic byproducts often limit their sustainability. Fortunately, phytoremediation, achieved through the use of plants and associated microbiomes, has shown great promise for tackling environmental pollution; this technology has been tested both in the laboratory and in the field. Plant-microbe interactions further promote the efficacy of phytoremediation, with plant growth-promoting bacteria (PGPB) often used to assist the remediation of organic pollutants. However, the efficiency of microbe-assisted phytoremediation can be impeded by (i) high concentrations of secondary toxins, (ii) the absence of a suitable sink for these toxins, (iii) nutrient limitations, (iv) the lack of continued release of microbial inocula, and (v) the lack of shelter or porous habitats for planktonic organisms. In this regard, biochar affords unparalleled positive attributes that make it a suitable bacterial carrier and soil health enhancer. We propose that several barriers can be overcome by integrating plants, PGPB, and biochar for the remediation of organic pollutants in soil. Here, we explore the mechanisms by which biochar and PGPB can assist plants in the remediation of organic pollutants in soils, and thereby improve soil health. We analyze the cost-effectiveness, feasibility, life cycle, and practicality of this integration for sustainable restoration and management of soil.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Humanos , Solo/química , Poluentes do Solo/análise , Ecossistema , Biodegradação Ambiental , Plantas , Bactérias
11.
Biosens Bioelectron ; 203: 114033, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131696

RESUMO

Conventional and routine diagnostics such as polymerase chain reaction (PCR) and serological tests are less sensitive, costly, and require sample pretreatment procedures. CRISPR/Cas systems that inherently assist bacteria and archaea in destroying invading phage genetic materials via an RNA-mediated interference strategy have been reconstituted in vitro and harnessed for nucleic and non-nucleic acid diagnostics. CRISPR/Cas-based diagnostics (CRISPR-Dx) are cost-effective, possess excellent sensitivity (attomolar) and specificity (single base distinction), exhibit fast turnaround response, and support nucleic acid extraction-free workflow. However, CRISPR-Dx still needs to address various challenges to translate the laboratory work into end-user tailored solutions. In this perspective, we review the relevant progress of CRISPR/Cas systems-based diagnostics, focusing on the comprehensive customization and applications of leading and trending CRISPR/Cas systems as platform technologies for fluorescence, colorimetric, and electrical signal detection. The impact of the CRISPR game-changing technology on the COVID-19 pandemic is highlighted. We also demonstrate the role of CRISPR/Cas systems for carryover contamination prevention. The advancements in signal amplification strategies using engineered crRNAs, novel reporters, nanoparticles, artificial genetic circuits, microfluidics, and smartphones are also covered. Furthermore, we critically discuss the translation of CRISPR-Dx's basic research into end-user diagnostics for commercialization success in the near future. Finally, we discuss the complex challenges and alternative solutions to harness the CRISPR/Cas potential in detail.


Assuntos
Técnicas Biossensoriais , COVID-19 , COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , Humanos , Pandemias , SARS-CoV-2/genética
12.
Crit Rev Food Sci Nutr ; 62(5): 1363-1382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33176432

RESUMO

The microencapsulation of essential oils by complex coacervation continues to attract considerable attention due to high payload, increased thermal stability and sustained release of core materials. This review recapitulates the thermal properties of coacervates and essential oil microcapsules prepared by complex coacervation method using protein/polysaccharide and polysaccharide/polysaccharide. The authors discussed the factors affecting coacervation and the thermal properties of coacervates. Besides, this review describes the microencapsulation processes physicochemical properties and release characteristics of essential oils microcapsules based on complex coacervation method. Finally, the review concentrates on the antimicrobial properties and the applications of essential oils microcapsules in food and nutrition. Despite extensive research conducted on the preparation of essential oils microcapsules prepared by complex coacervation, the application of this technique in encapsulating essential oils exposed to high temperatures during processing and storage remains a current area of research. Therefore, the research consolidated in this review describes a high degree of thermal stability of essential oils microcapsules prepared with complex coacervation that is yet understood, which can be readily utilized in the food and pharmaceutical industries.


Assuntos
Óleos Voláteis , Cápsulas , Composição de Medicamentos , Polissacarídeos , Proteínas
13.
J Environ Manage ; 293: 112856, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051535

RESUMO

To meet the ever-growing human demands for food, fuel, and fiber, agricultural activities have dramatically altered the global carbon (C) and nitrogen (N) cycles. These biogeochemical cycles along with water, phosphorus, and sulfur cycles are fundamental features of life on Earth. Human alteration of the global N cycle has had both positive and negative outcomes. To efficiently feed a growing population, crop-livestock production systems have been developed, however, these systems also contribute significantly to environmental pollution and global climate change. Management of agricultural waste (AW) and the application of N fertilizers are central to the issues of greenhouse gas (GHG) emissions and nutrient runoff that contributes to the eutrophication of water bodies. If managed properly, AW can provide nutrients for plants and contribute to the conservation of soil health. In order to achieve the long-term conservation of agricultural production systems, it is important to promote the proper recycling of AW in agroecosystems and to minimize the reliance on chemical N fertilizers. Composting is one of the sustainable and effective approaches for recycling AW in agriculture. However, the conventional composting process is dilatory and produces compost with low N content compared to chemical N fertilizers. For this reason, comprehensive research is required to improve the composting process and the N content of the soil organic amendments. This work aims to explore the beneficial effects of the integrated application of biochar and specific C and N cycling microorganisms to the composting process and the quality of the composted products. In pursuit of replacing chemical N fertilizers with bio/organic fertilizers, we further discussed the power of the combined application of compost, biochar, and N-fixing bacteria in agricultural production systems. The knowledge of smart integration of AW and microorganisms in agriculture could solve the main agricultural and environmental problems associated with human-induced flows of C and N. Building upon the knowledge disseminated in review to further extensive research will pave the way for better management of agricultural production systems and sustainable C and N cycling in agriculture.


Assuntos
Carbono , Compostagem , Agricultura , Fertilizantes/análise , Humanos , Nitrogênio/análise , Solo
14.
J Agric Food Chem ; 69(4): 1348-1358, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33492149

RESUMO

Low-environment-sensitive nanoparticles were prepared by enzymatic cross-linking of electrostatic complexes of dextran-grafted whey protein isolate (WPI-Dextran) and chondroitin sulfate (ChS). The effect of transglutaminase (TG) and laccase cross-linking on nanoparticle stability was investigated. Covalent TG cross-linking and grafted dextran cooperatively contributed to the stability of nanoparticles against dissociation and aggregation under various harsh environmental conditions (sharply varying pH, high ionic strength, high temperature, and their combined effects). However, fragmentation induced by laccase treatment did not promote nanoparticle stability. Structural characterization showed that the compact structure promoted by TG-induced covalent isopeptide bonds repressed dissociation against varying environmental conditions and thermal-induced aggregation. Furthermore, the increasing α-helix and decreasing random coil contents benefited the formation of disulfide bonds, further contributing to the enhanced stability of nanoparticles cross-linked by TG, whereas weak hydrophobic interactions and hydrogen bonding as evidenced by the increase in ß-sheet and microenvironmental changes were not able to maintain the stability of nanoparticles treated with laccase. Encapsulated cinnamaldehyde presented sustained release from TG-cross-linked nanoparticles, and the bioaccessibility was considerably enhanced to 50.7%. This research developed a novel mild strategy to enhance nanoparticle stability in harsh environments and digestive conditions, which could be an effective delivery vehicle for hydrophobic nutrients and drug applications in food and pharmaceutical industries.


Assuntos
Lacase/química , Nanopartículas/química , Transglutaminases/química , Sulfatos de Condroitina/química , Reagentes de Ligações Cruzadas/química , Géis/química , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Eletricidade Estática , Proteínas do Soro do Leite/química
15.
Food Res Int ; 125: 108521, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554080

RESUMO

The aim of this study was to investigate the effect of microwave and traditional water bath on physical and chemical properties of grass carp meat and the impact on saltiness perception. The surface hydrophobicity and Fourier transform infrared spectroscopy (FTIR) results showed that microwave made meat proteins unfold less than water bath. The low degree of protein unfolding of meat cooked by microwave caused the changes in water distribution and the formation of a compact microstructure, which were related to the enhancement of saltiness perception. Furthermore, the meat cooked by microwave had lower cooking loss and shear force compared to traditional water bath. The sodium level remained and the distribution of Na and Cl in meat matrix further demonstrated sensory analysis result that the grass carp meat cooked by microwave was saltier than that cooked by water bath. The current research also provided a new approach to reduce salt consumption in fish cooking for home cooking or food industry.


Assuntos
Carpas , Culinária/métodos , Micro-Ondas , Alimentos Marinhos/análise , Cloreto de Sódio na Dieta/análise , Animais , Água/química
16.
J Food Sci Technol ; 53(6): 2863-75, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27478243

RESUMO

In this study, the flavour-enhancing properties of the Maillard reaction products (MRPs) for different systems consisted of different peptides (sunflower, SFP; corn, CP and soyabean SP) with, xylose and cysteine were investigated. Maillard systems from peptides of sunflower, corn and soyabean with xylose and cysteine were designated as PXC, MCP and MSP, respectively. The Maillard systems were prepared at pH of 7.4 using temperature of 120C for 2 h. Results showed that all systems were significantly different in all sensory attributes. The highest scores for mouthfulness and continuity were observed for MCP with the lowest peptides distribution between 1000 and 5000 Da, known as Maillard peptide. This revealed that the MCP with the lowest Maillard peptide content had the strongest "Kokumi" effect compared to the other MRPsand demonstrated that "kokumi effect" of MRPs was contributed by not only the "Maillard peptide" defined by the molecular weight (1000-5000 Da). Results on sensory evaluation after fractionation of PXC followed by enzymatic hydrolysis showed no significant differences between PXC, P-PXC and their hydrolysates. This observation therefore confirmed that the presence of other contributors attributed to the "Kokumi" effect rather than the Maillard peptide. It can be deduced that the unhydrolyzed crosslinking products might have contributed to the "Kokumi" effect of MRPs. The structures of four probable crosslinking compounds were proposed and the findings have provided new insights in the sensory characteristics of xylose, cysteine and sunflower peptide MRPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA