Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell Death Dis ; 15(5): 374, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811543

RESUMO

High workload-induced cellular stress can cause pancreatic islet ß cell death and dysfunction, or ß cell failure, a hallmark of type 2 diabetes mellitus. Thus, activation of molecular chaperones and other stress-response genes prevents ß cell failure. To this end, we have shown that deletion of the glucose-regulated protein 94 (GRP94) in Pdx1+ pancreatic progenitor cells led to pancreas hypoplasia and reduced ß cell mass during pancreas development in mice. Here, we show that GRP94 was involved in ß cell adaption and compensation (or failure) in islets from leptin receptor-deficient (db/db) mice in an age-dependent manner. GRP94-deficient cells were more susceptible to cell death induced by various diabetogenic stress conditions. We also identified a new client of GRP94, insulin-like growth factor-1 receptor (IGF-1R), a critical factor for ß cell survival and function that may mediate the effect of GRP94 in the pathogenesis of diabetes. This study has identified essential functions of GRP94 in ß cell failure related to diabetes.


Assuntos
Células Secretoras de Insulina , Receptor IGF Tipo 1 , Animais , Camundongos , Morte Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Receptores para Leptina/metabolismo , Receptores para Leptina/genética
2.
J Mol Cell Cardiol ; 186: 16-30, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935281

RESUMO

Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.


Assuntos
Doenças das Valvas Cardíacas , Valva Mitral , Humanos , Camundongos , Animais , Valva Mitral/metabolismo , Doenças das Valvas Cardíacas/patologia , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Camundongos Knockout , Fatores de Transcrição/metabolismo
3.
JACC CardioOncol ; 4(4): 535-548, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36444237

RESUMO

Background: Trametinib is a MEK1 (mitogen-activated extracellular signal-related kinase kinase 1) inhibitor used in the treatment of BRAF (rapid accelerated fibrosarcoma B-type)-mutated metastatic melanoma. Roughly 11% of patients develop cardiomyopathy following long-term trametinib exposure. Although described clinically, the molecular landscape of trametinib cardiotoxicity has not been characterized. Objectives: The aim of this study was to test the hypothesis that trametinib promotes widespread transcriptomic and cellular changes consistent with oxidative stress and impairs cardiac function. Methods: Mice were treated with trametinib (1 mg/kg/d). Echocardiography was performed pre- and post-treatment. Gross, histopathologic, and biochemical assessments were performed to probe for molecular and cellular changes. Human cardiac organoids were used as an in vitro measurement of cardiotoxicity and recovery. Results: Long-term administration of trametinib was associated with significant reductions in survival and left ventricular ejection fraction. Histologic analyses of the heart revealed myocardial vacuolization and calcification in 28% of animals. Bulk RNA sequencing identified 435 differentially expressed genes and 116 differential signaling pathways following trametinib treatment. Upstream gene analysis predicted interleukin-6 as a regulator of 17 relevant differentially expressed genes, suggestive of PI3K/AKT and JAK/STAT activation, which was subsequently validated. Trametinib hearts displayed elevated markers of oxidative stress, myofibrillar degeneration, an 11-fold down-regulation of the apelin receptor, and connexin-43 mislocalization. To confirm the direct cardiotoxic effects of trametinib, human cardiac organoids were treated for 6 days, followed by a 6-day media-only recovery. Trametinib-treated organoids exhibited reductions in diameter and contractility, followed by partial recovery with removal of treatment. Conclusions: These data describe pathologic changes observed in trametinib cardiotoxicity, supporting the exploration of drug holidays and alternative pharmacologic strategies for disease prevention.

4.
BMC Geriatr ; 21(1): 118, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568107

RESUMO

BACKGROUND: Chronic venous leg ulcers (CVLUs) are the most common type of lower extremity wound. Even when treated with evidenced-based care, 30-50% of CVLUs fail to heal. A specific gap exists about the association between psychosocial stressors, particularly loneliness, and biomarkers of inflammation and immunity. Loneliness is highly prevalent in persons with CVLUs, has damaging effects on health, and contributes to the development of multiple chronic conditions, promotes aberrant inflammation, and diminishes healing. However, the confluence of loneliness, inflammation and the wound healing trajectory has not been elucidated; specifically whether loneliness substantially mediates systemic inflammation and alters healing over time. This study seeks to address whether there is a specific biomarker profile associated with loneliness, CVLUs, and wound healing that is different from non-lonely persons with CVLUs. METHODS: An observational prospective study will identify, characterize and explore associations among psychosocial stressors, symptoms and biomarkers between 2 CVLU groups, with loneliness+ (n = 28) and without loneliness- (n = 28) during 4 weeks of wound treatment, measured at 3 time points. We will examine psychosocial stressors and symptoms using psychometrically-sound measures include PROMIS® and other questionnaires for loneliness, social isolation, depression, anxiety, stigma, sleep, fatigue, pain, quality of life, cognition, and function. Demographics data including health history, sex, age, wound type and size, wound age, and treatment will be recorded from the electronic health record. We will characterize a biomarker panel of inflammatory genes including chemotaxic and growth factors, vascular damage, and immune regulators that express in response to loneliness to loneliness and CVLUs using well-established RNA sequence and PCR methods for whole blood samples. In an exploratory aim we will explore whether age and sex/psychological stressors and symptoms indicate potential moderation/mediation of the effect of loneliness on the biomarker profile over the study period. DISCUSSION: This study will provide insight into the influence of psychosocial stressors, symptoms, and biological mechanisms on wound healing, towards advancing a future healing prediction model and interventions to address these stressors and symptoms experienced by persons with CVLUs.


Assuntos
Solidão , Úlcera Varicosa , Idoso , Humanos , Inflamação , Estudos Observacionais como Assunto , Estudos Prospectivos , Qualidade de Vida
5.
J Biol Chem ; 295(52): 18091-18104, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33087445

RESUMO

Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Endotélio Vascular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Núcleo Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Mitocôndrias/patologia , Biogênese de Organelas , Consumo de Oxigênio , Fatores de Transcrição/genética
6.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752345

RESUMO

BACKGROUND: Autophagy is a catabolic cellular recycling pathway that is essential for maintaining intracellular homeostasis. Autophagosome formation is achieved via the coordination of the Beclin-1 protein complex. Rubicon is a Beclin-1 associated protein that suppresses autophagy by impairing the activity of the class III PI3K, Vps34. However, very little is known about the molecular mechanisms that regulate Rubicon function. METHODS: In this study, co-immunoprecipitation and kinase assays were used to investigate the ability of Hormonally Upregulated Neu-associated Kinase (HUNK) to bind to and phosphorylate Rubicon. LC3B was monitored by immunofluorescence and immunoblotting to determine whether phosphorylation of Rubicon by HUNK controls the autophagy suppressive function of Rubicon. RESULTS: Findings from this study identify Rubicon as a novel substrate of HUNK and show that phosphorylation of Rubicon inhibits its function, promoting autophagy.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Fagossomos/metabolismo
7.
J Mol Cell Cardiol ; 137: 132-142, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31668971

RESUMO

Specification of the primary heart field in mouse embryos requires signaling from the anterior visceral endoderm (AVE). The nature of these signals is not known. We hypothesized that the TGFß-activated kinase (TAK1/Map3k7) may act as a cardiogenic factor, based on its expression in heart-inducing endoderm and its requirement for cardiac differentiation of p19 cells. To test this, mouse embryonic stem (ES) cells overexpressing Map3k7 were isolated and differentiated as embryoid bodies (EBs). Map3k7-overexpressing EBs showed increased expression of AVE markers but interestingly, showed little effect on mesoderm formation and had no impact on overall cardiomyocyte formation. To test whether the pronounced expansion of endoderm masks an expansion of cardiac lineages, chimeric EBs were made consisting of Map3k7-overexpressing ES and wild type ES cells harboring a cardiac reporter transgene, MHCα::GFP, allowing cardiac differentiation to be assessed specifically in wild type ES cells. Wild type ES cells co-cultured with Map3k7-overexpressing cells had a 4-fold increase in expression of the cardiac reporter, supporting the hypothesis that Map3k7 increases the formation of cardiogenic endoderm. To further examine the role of Map3k7 in early lineage specification, other endodermal markers were examined. Interestingly, markers that are expressed in both the VE and later in gut development were expanded, whereas transcripts that specifically mark the early definitive (streak-derived) endoderm (DE) were not. To determine if Map3k7 is necessary for endoderm differentiation, EBs were grown in the presence of the Map3k7 specific inhibitor 5Z-7-oxozeaenol. Endoderm differentiation was dramatically decreased in these cells. Western blot analysis showed that known downstream targets of Map3k7 (Jnk, Nemo-like kinase (NLK) and p38 MAPK) were all inhibited. By contrast, transcripts for another TGFß target, Sonic Hedgehog (Shh) were markedly upregulated, as were transcripts for Gli2 (but not Gli1 and Gli3). Together these data support the hypothesis that Map3k7 governs the formation, or proliferation of cardiogenic endoderm.


Assuntos
Diferenciação Celular , Endoderma/embriologia , Endoderma/enzimologia , Coração/embriologia , MAP Quinase Quinase Quinases/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Organogênese , Animais , Linhagem Celular , Corpos Embrioides/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases , Mesoderma/embriologia , Camundongos , Miócitos Cardíacos/citologia , Regulação para Cima/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
8.
Biochem Pharmacol ; 169: 113644, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31542386

RESUMO

A hallmark of acute kidney injury (AKI) is vascular rarefication and mitochondrial dysfunction. Promoting vascular recovery following AKI could facilitate kidney repair as the vasculature is responsible for oxygen and nutrient delivery to extravascular tissues. Little is known about mitochondrial biogenesis (MB) in endothelial cells, and the role of 5-HT1F receptor signaling in MB has only been studied in epithelial cells. Our laboratory has shown that stimulating MB through the 5-HT1F receptor promotes recovery from AKI and that 5-HT1F receptor knockout mice have decreased MB and poor renal recovery. We hypothesized that the 5-HT1F receptor plays a role in vascular homeostasis and mediates MB in renal endothelial cells. 5-HT1F receptor knockout mice had decreased renal vascular content, as evidenced by decreased CD31+ endothelial cells and αSMA+ vessels. Human glomerular endothelial cells (HEC) and mouse glomerular endothelial cells (MEC) expressed the 5-HT1F receptor. Treatment of HEC and MEC with 5-HT1F receptor agonists LY344864 or lasmiditan (0-500 nM) induced MB as evidenced by maximal mitochondrial respiration, a marker of MB. HEC and MEC treated with lasmiditan or LY344864 also had increased nuclear- and mitochondrial-encoded proteins (PGC1α, COX-1, and VDAC), and mitochondrial number, confirming MB. Treatment of HEC with LY344864 or lasmiditan enhanced endothelial branching morphogenesis and migration, indicating a role for 5-HT1F receptor stimulation in angiogenic pathways. We propose that stimulation of 5-HT1F receptor is involved in MB in endothelial cells and that treatment with 5-HT1F receptor agonists could restore stimulate repair and recovery following kidney injury.


Assuntos
Células Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Biogênese de Organelas , Receptores de Serotonina/fisiologia , Injúria Renal Aguda/etiologia , Animais , Benzamidas/farmacologia , Carbazóis/farmacologia , Células Cultivadas , Fluorbenzenos/farmacologia , Rim/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/farmacologia , Piridinas/farmacologia , Receptor 5-HT1F de Serotonina
9.
Lupus Sci Med ; 6(1): e000294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31168396

RESUMO

OBJECTIVE: SLE serves as an independent risk factor` for endothelial dysfunction (ED) not explained by Framingham risk factors. We sought to understand the development of SLE-induced ED on a cellular level in order to develop strategies aimed at reversing cellular abnormalities. This study assessed the impact of SLE patient serum on endothelial nitric oxide synthase (eNOS), nitric oxide (NO) production and functional changes in the cell. METHODS: Human umbilical vein endothelial cells (HUVECs) cultured in serum of either SLE (n=25) or healthy patients (n=14) or endothelial basal medium 2 (EBM-2) culture media supplemented with fetal bovine serum with or without L-sepiapterin were used for our studies. We applied the fluorescent probe DAF-FM diacetate for intracellular NO detection using flow cytometry. Total RNA isolates were analysed using reverse transcription PCR for eNOS mRNA expression. Oxygen consumption rate was determined using seahorse analysis. Neutrophil adhesion and migration were determined using a calcein AM microscopy assay. RESULTS: The mRNA expression of eNOS was increased in SLE cultured HUVECs compared with healthy control (p<0.05). The SLE eNOS mRNA level correlated with SLE patient age (p=0.008); however, this trend was not observed with healthy patients. SLE serum reduced NO production in HUVECs compared with EBM-2 cultured cells (p<0.05). Co-treatment of endothelial cells with L-sepiapterin preserved HUVEC capacity to produce NO in SLE conditions (p<0.01). SLE serum enhanced neutrophil migration (p<0.01) but not neutrophil adhesion compared with healthy controls. The bioenergetic health index was not different. CONCLUSIONS: SLE likely causes disruption of endothelial cell eNOS function and NO modulated pathways.

10.
BMC Cancer ; 19(1): 491, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122207

RESUMO

BACKGROUND: Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. METHODS: Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. RESULTS: Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. CONCLUSIONS: These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Oncogenes , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular , Proliferação de Células , Cromossomos Humanos Par 8/genética , Intervalo Livre de Doença , Everolimo/farmacologia , Feminino , Amplificação de Genes , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Fosfoproteínas/genética , Fosforilação , Prognóstico , Receptores de Estrogênio , Recidiva , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transfecção
11.
Wound Repair Regen ; 27(4): 335-344, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30805987

RESUMO

Large bone injuries, defects, and chronic wounds present a major problem for medicine. Several therapeutic strategies are used clinically to precipitate bone including a combination therapy delivering osteoinductive bone morphogenetic protein 2 (rhBMP-2) via an osteoconductive scaffold (absorbable collagen sponge [ACS], i.e., INFUSE). Adverse side effects reportedly associated with rhBMP2 administration include rampant inflammation and clinical failures. Although acute inflammation is necessary for proper healing in bone, inflammatory cascade dysregulation can result in sustained tissue damage and poor healing. We hypothesized that a subclinical dose of rhBMP2 modeled in the murine calvarial defect would not precipitate alterations to inflammatory markers during acute phases of bone wound healing. We utilized the 5 mm critical size calvarial defect in C57BL6 wild-type mice which were subsequently treated with ACS and a subclinical dose of rhBMP2 shown to be optimal for healing. Three and 7-day postoperative time points were used to assess the role that rhBMP-2 plays in modulating inflammation vs. ACS alone by cytokine array and histological interrogation. Data revealed that rhBMP-2 delivery resulted in substantial modulation of several markers associated with inflammation, most of which decreased to levels similar to control by the 7-day time point. Additionally, while rhBMP-2 administration increased macrophage response, this peptide had a little noticeable effect on traditional markers of macrophage polarization (M1-iNOS, M2-Arg1). These results suggest that rhBMP-2 delivered at a lower dose does not precipitate rampant inflammation. Thus, an assessment of dosing for rhBMP-2 therapies may lead to better healing outcomes and less surgical failure.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Colágeno/farmacologia , Fraturas Ósseas/patologia , Inflamação/patologia , Osteogênese/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Implantes Absorvíveis , Animais , Modelos Animais de Doenças , Fraturas Ósseas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Alicerces Teciduais , Cicatrização/fisiologia
12.
J Transl Med ; 16(1): 321, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463618

RESUMO

BACKGROUND: Bone is a highly vascularized and resilient organ with innate healing abilities, however some bone injuries overwhelm these attributes and require intervention, such as bone tissue engineering strategies. Combining biomaterials and growth factors, such as bone morphogenetic protein 2 (BMP2), is one of the most commonly used tissue engineering strategies. However, use of BMP2 has been correlated with negative clinical outcomes including aberrant inflammatory response, poor quality bone, and ectopic bone. METHODS: In the present study, a novel poly-n-acetyl glucosamine (pGlcNAc, trade name Talymed) scaffold was utilized in addition to the commonly used acellular collagen sponge (ACS) BMP2 delivery system in a murine calvarial defect model to investigate whether the innate properties of Talymed can reduce the noted negative bone phenotypes associated with BMP2 treatment. RESULTS: Comparison of murine calvarial defect healing between ACS with and without Talymed revealed that there was no measurable healing benefit for the combined treatment. Healing was most effective utilizing the traditional acellular collagen sponge with a reduced dose of BMP2. CONCLUSIONS: The results of this investigation lead to the conclusion that excessive dosing of BMP2 may be responsible for the negative clinical side effects observed with this bone tissue engineering strategy. Rather than augmenting the currently used ACS BMP2 bone wound healing strategy with an additional anti-inflammatory scaffold, reducing the dose of BMP2 used in the traditional delivery system results in optimal healing without the published negative side effects of BMP2 treatment.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Colágeno/farmacologia , Nanofibras/química , Crânio/patologia , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Crânio/diagnóstico por imagem , Crânio/efeitos dos fármacos , Microtomografia por Raio-X
13.
J Tissue Eng Regen Med ; 12(10): 2055-2066, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30058251

RESUMO

Many variables serve to alter the process of bone remodelling and diminish regeneration including the size and nature of the wound bed and health status of the individual. To overcome these inhibitory factors, tissue-engineered osteoconductive scaffolds paired with various growth factors have been utilized clinically. However, many limitations still remain, for example, bone morphogenetic protein 2 (BMP2) can lead to rampant inflammation, ectopic bone formation, and graft failure. Here, we studied the ability for a nanofiber scaffold (Talymed) to accelerate BMP2 growth factor-induced bone healing compared with the traditional absorbable collagen sponge (ACS) delivery system. One hundred fifty-five adult wild type mice were arranged in 16 groups by time, 4 and 8 weeks, and treatment, ACS or Talymed, loaded with control, low, medium, or high dosages of BMP2. Skulls were subjected to microCT, biomechanical, and histological analysis to assess bone regeneration. The use of Talymed within the defect site was found to decrease the bone volume, bone formation rate, and alkaline phosphatase activity compared with ACS/BMP2 combinations. Interestingly, though Talymed regenerated less bone, the regenerate was found to have a greater hardness value than that of bone within the ACS groups. However, the difference in bone hardness between scaffolds was not detectable by 8 weeks. Based on these results, we found that the nanofiber scaffold generated a better quality of bone regenerate at 4 weeks but, due to the lack of overall bone formation and the inhibition of normal remodelling processes, was not as efficacious as the current clinical standard ACS/BMP2 therapy.


Assuntos
Regeneração Óssea/fisiologia , Nanofibras/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Proteína Morfogenética Óssea 2/farmacologia , Reabsorção Óssea/patologia , Colágeno/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos
14.
Wound Repair Regen ; 26(5): 359-365, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30054956

RESUMO

Large craniofacial defects present a substantial clinical challenge that often requires the use of osteoconductive matrices and osteoinductive cues (i.e., bone morphogenetic proteins [BMP2]) to augment healing. While these methods have improved clinical outcomes, a better understanding of how the osteogenic fronts surrounding the defect, the underlying dura mater, and the cranial suture area contribute to healing may lead to more targeted therapies to enhance bone regeneration. We hypothesized that healing within a large bone defect will be precipitated from cells within the remaining or available suture mesenchyme abutting the edges of a murine critical sized defect. To investigate this hypothesis, 39 adult, wild-type mice were randomly arranged into groups (9 or 10 per group) by time (4 and 8 weeks) and treatment (control, acellular collagen sponge alone, or acellular collagen sponge loaded with a clinically relevant scaled dosage of BMP2). The skulls were then subjected to microcomputed tomography and histological analysis to assess bone regeneration in regions of interest within the defect area. A regional assessment of healing indicated that BMP2 drives greater healing than control and that healing emanates from the surgical margin, particularly from the margin associated with undisrupted suture mesenchyme. Though BMP2 treatment drove an increase in cell presence within the healing defect, there was no regional orientation of craniofacial stem cells or vascularity. Overall, these data reinforce that osteoconductive matrices in conjunction with osteoinductive peptides result in better healing of large calvarial defects. This healing is characterized as emanating from the surgical margin where there is an abundant supply of vasculature and progenitor cells.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Colágeno/farmacologia , Fraturas Ósseas/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Crânio/anormalidades , Crânio/citologia , Cicatrização/fisiologia , Implantes Absorvíveis , Animais , Modelos Animais de Doenças , Portadores de Fármacos , Fraturas Ósseas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Crânio/lesões , Cicatrização/efeitos dos fármacos
15.
J Immunol ; 199(6): 1979-1988, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28779021

RESUMO

Systemic lupus erythematosus (SLE) is a known risk factor for endothelial dysfunction. Murine and human lupus studies revealed a role for IFN-α in vascular abnormalities associated with impaired blood vessel dilation. However, the impact of IFN-α on mediators that induce vasodilation and modulate inflammation, including endothelial NO synthase (eNOS) and NO bioavailability, are unknown. The objectives of this study were to determine how IFN-α promotes endothelial dysfunction in SLE, focusing on its regulation of eNOS and NO production in endothelial cells. We demonstrate that IFN-α promotes an endothelial dysfunction signature in HUVECs that is characterized by transcription suppression and mRNA instability of eNOS complemented by upregulation of MCP1 and VCAM1 These changes are associated with IFN-inducible gene expression. IFN-α impairs insulin-mediated NO production, and altered gene expression resulted from eNOS instability, possibly due to enhanced miR-155 expression. IFN-α significantly impaired NO production in insulin-stimulated HUVECs. IFN-α treatment also led to enhanced neutrophil adhesion. Our study introduces a novel pathway by which IFN-α serves as a proatherogenic mediator through repression of eNOS-dependent pathways. This could promote the development of endothelial dysfunction and cardiovascular disease in SLE.


Assuntos
Vasos Sanguíneos/patologia , Endotélio Vascular/patologia , Interferon-alfa/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Neutrófilos/imunologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Adesão Celular , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Insulina/imunologia , Interferon-alfa/imunologia , Camundongos , MicroRNAs/genética , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
16.
PLoS One ; 10(5): e0127876, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955155

RESUMO

Treatment of cutaneous wounds with poly-N-acetyl-glucosamine containing nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increased wound closure, antibacterial activities and innate immune responses. We have shown that Akt1 plays a central role in the regulation of these activities. Here, we show that pGlcNAc treatment of cutaneous wounds results in a smaller scar that has increased tensile strength and elasticity. pGlcNAc treated wounds exhibit decreased collagen content, increased collagen organization and decreased myofibroblast content. A fibrin gel assay was used to assess the regulation of fibroblast alignment in vitro. In this assay, fibrin lattice is formed with two pins that provide focal points upon which the gel can exert force as the cells align from pole to pole. pGlcNAc stimulation of embedded fibroblasts results in cellular alignment as compared to untreated controls, by a process that is Akt1 dependent. We show that Akt1 is required in vivo for the pGlcNAc-induced increased tensile strength and elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing.


Assuntos
Acetilglucosamina/administração & dosagem , Cicatriz/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pele/lesões , Resistência à Tração/efeitos dos fármacos , Acetilglucosamina/química , Acetilglucosamina/farmacologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Nanofibras/química , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Cicatrização
17.
FASEB J ; 28(1): 395-407, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24081905

RESUMO

Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (~5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ~1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.


Assuntos
Autofagia/fisiologia , Carioferinas/metabolismo , Mitocôndrias/metabolismo , Renovação Mitocondrial/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Autofagia/genética , Western Blotting , Imunofluorescência , Células Endoteliais da Veia Umbilical Humana , Imunoprecipitação , Carioferinas/genética , Camundongos , Camundongos Knockout , Renovação Mitocondrial/genética , Proteínas Proto-Oncogênicas c-akt/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Citoplasmáticos e Nucleares/genética , Proteína Exportina 1
18.
Dev Biol ; 373(1): 163-75, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23103584

RESUMO

To evaluate potential roles of nitric oxide (NO) in the regulation of the endothelial lineage and neovascular processes (vasculogenesis and angiogenesis) we evaluated endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (p-eNOS) expression in 7.2-8.5 days post-coitum (dpc) mouse embryos. Analysis revealed that p-eNOS((S1177)) but not P-eNOS((S617)) or P-eNOS((T495)) was expressed in a subpopulation of angioblasts (TAL-1(+)/Flk-1(+)/CD31(-)/CD34(-)/VE-Cadherin(-)) at 7.2 dpc. A role of the VEGF/Akt1/eNOS signaling pathway in the regulation of the endothelial cell (EC) lineage was suggested by the strong correlation observed between cell division and p-eNOS((S1177)) expression in both angioblasts and embryonic endothelial cells (EECs, TAL-1(+)/Flk-1(+)/CD31(+)/CD34(+)/VE-Cadherin(+)). Our studies using Akt1 null mouse embryos show a reduction in p-eNOS((S1177)) expression in angioblast and EECs that is correlated with a decrease in endothelial cell proliferation and results in changes in VEGF-induced vascular patterning. Further, we show that VEGF-mediated cell proliferation in Flk-1(+) cells in allantoic cultures is decreased by pharmacological inhibitors of the VEGF/Akt1/eNOS signaling pathways. Taken together, our findings suggest that VEGF-mediated eNOS phosphorylation on Ser1177 regulates angioblast and EEC division, which underlies the formation of blood vessels and vascular networks.


Assuntos
Proliferação de Células , Células Endoteliais/fisiologia , Mioblastos Cardíacos/fisiologia , Neovascularização Fisiológica/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alantoide/citologia , Animais , Linhagem Celular , Linhagem da Célula/fisiologia , Células Endoteliais/metabolismo , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Mioblastos Cardíacos/metabolismo , Fosforilação , Transdução de Sinais/genética
19.
J Vasc Res ; 49(2): 89-100, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22249024

RESUMO

BACKGROUND: Poly-N-acetyl glucosamine nanofibers derived from a marine diatom have been used to increase cutaneous wound healing. These nanofibers exert their activity by specifically activating integrins, which makes them a useful tool for dissecting integrin-mediated pathways. We have shown that short-fiber poly-N-acetyl glucosamine nanofiber (sNAG) treatment of endothelial cells results in increased cell motility and metabolic rate in the absence of increased cell proliferation. RESULTS: Using a Seahorse Bioanalyzer to measure oxygen consumption in real time, we show that sNAG treatment increases oxygen consumption rates, correlated with an integrin-dependent activation of Akt1. Akt1 activation leads to an increase in the expression of the transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). This is not due to increased mitochondrial biogenesis, but is associated with an increase in the expression of pyruvate dehydrogenase kinase 4 (PDK4), suggesting regulation of fatty acid oxidation. Blockade of fatty acid oxidation with etomoxir, an O-carnitine palmitoyltransferase-1 inhibitor, blocks the sNAG-dependent increased oxygen consumption. (3)H-palmitate uptake experiments indicate a PDK4-dependent increase in fatty acid oxidation, which is required for nanofiber-induced cell motility. CONCLUSIONS: Our findings imply a linear pathway whereby an integrin-dependent activation of Akt1 leads to increased PGC-1α and PDK4 expression resulting in increased energy production by fatty acid oxidation.


Assuntos
Acetilglucosamina/farmacologia , Ácidos Graxos/metabolismo , Proteínas de Choque Térmico/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/biossíntese , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Compostos de Epóxi/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanofibras , Oxirredução , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Quinases/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Regulação para Cima
20.
Int J Cancer ; 130(3): 532-43, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21351097

RESUMO

The PI3 kinase/Akt pathway is commonly deregulated in human cancers, functioning in such processes as proliferation, glucose metabolism, survival and motility. We have previously described a novel function for one of the Akt isoforms (Akt3) in primary endothelial cells: the control of VEGF-induced mitochondrial biogenesis. We sought to determine if Akt3 played a similar role in carcinoma cells. Because the PI3 kinase/Akt pathway has been strongly implicated as a key regulator in ovarian carcinoma, we tested the role of Akt3 in this tumor type. Silencing of Akt3 by shRNA did not cause an overt reduction in mitochondrial gene expression in a series of PTEN positive ovarian cancer cells. Rather, we find that blockade of Akt3, results in smaller, less vascularized tumors in a xenograft mouse model that is correlated with a reduction in VEGF expression. We find that blockade of Akt3, but not Akt1, results in a reduction in VEGF secretion and retention of VEGF protein in the endoplasmic reticulum (ER). The reduction in secretion under conditions of Akt3 blockade is, at least in part, due to the down regulation of the resident golgi protein and reported tumor cell marker, RCAS1. Conversely, over-expression of Akt3 results in an increase in RCAS1 expression and in VEGF secretion. Silencing of RCAS1 using siRNA inhibits VEGF secretion. These findings suggest an important role for Akt3 in the regulation of RCAS1 and VEGF secretion in ovarian cancer cells.


Assuntos
Neovascularização Patológica , Neoplasias Ovarianas/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Camundongos SCID , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neovascularização Patológica/genética , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA