Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373546

RESUMO

Crops experience herbivory by arthropods and microbial infections. In the interaction between plants and chewing herbivores, lepidopteran larval oral secretions (OS) and plant-derived damage-associated molecular patterns (DAMPs) trigger plant defense responses. However, the mechanisms underlying anti-herbivore defense, especially in monocots, have not been elucidated. The receptor-like cytoplasmic kinase Broad-Spectrum Resistance 1 (BSR1) of Oryza sativa L. (rice) mediates cytoplasmic defense signaling in response to microbial pathogens and enhances disease resistance when overexpressed. Here, we investigated whether BSR1 contributes to anti-herbivore defense responses. BSR1 knockout suppressed rice responses triggered by OS from the chewing herbivore Mythimna loreyi Duponchel (Lepidoptera: Noctuidae) and peptidic DAMPs OsPeps, including the activation of genes required for biosynthesis of diterpenoid phytoalexins (DPs). BSR1-overexpressing rice plants exhibited hyperactivation of DP accumulation and ethylene signaling after treatment with simulated herbivory and acquired enhanced resistance to larval feeding. As the biological significance of herbivory-induced accumulation of rice DPs remains unexplained, their physiological activities in M. loreyi were analyzed. The addition of momilactone B, a rice DP, to the artificial diet suppressed the growth of M. loreyi larvae. Altogether, this study revealed that BSR1 and herbivory-induced rice DPs are involved in the defense against chewing insects, in addition to pathogens.


Assuntos
Mariposas , Oryza , Animais , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Herbivoria/fisiologia , Transdução de Sinais , Mariposas/fisiologia , Plantas/metabolismo , Larva/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Environ ; 44(8): 2687-2699, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34114241

RESUMO

Despite the importance of volatile organic compounds (VOCs) for plants, control mechanisms for their basal and stress-induced biosynthesis and release remain unclear. We sampled and characterized headspace and internal leaf volatile pools in rice (Oryza sativa), after a simulated herbivory treatment, which triggers an endogenous jasmonate burst. Certain volatiles, such as linalool, were strongly upregulated by simulated herbivory stress. In contrast, other volatiles, such as ß-caryophyllene, were constitutively emitted and fluctuated according to time of day. Transcripts of the linalool synthase gene transiently increased 1-3 h after exposure of rice to simulated herbivory, whereas transcripts of caryophyllene synthase peaked independently at dawn. Unexpectedly, although emission and accumulation patterns of rice inducible and constitutive VOCs were substantially different, both groups of volatiles were compromised in jasmonate-deficient hebiba mutants, which lack the allene oxide cyclase (AOC) gene. This suggests that rice employs at least two distinct oxylipin-dependent mechanisms downstream of AOC to control production of constitutive and herbivore-induced volatiles. Levels of the JA precursor, 12-oxo-phytodienoic acid (OPDA), were correlated with constitutive volatile levels suggesting that OPDA or its derivatives could be involved in control of volatile emission in rice.


Assuntos
Herbivoria , Oryza/fisiologia , Oxilipinas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Monoterpenos Acíclicos/metabolismo , Animais , Ciclopentanos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredutases Intramoleculares/genética , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo
3.
J Exp Bot ; 71(20): 6491-6511, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32697299

RESUMO

We examined the role of ethylene in the production of rice (Oryza sativa) volatile organic compounds (VOCs), which act as indirect defense signals against herbivores in tritrophic interactions. Rice plants were exposed to exogenous ethylene (1 ppm) after simulated herbivory, which consisted of mechanical wounding supplemented with oral secretions (WOS) from the generalist herbivore larva Mythimna loreyi. Ethylene treatment highly suppressed VOCs in WOS-treated rice leaves, which was further corroborated by the reduced transcript levels of major VOC biosynthesis genes in ethylene-treated rice. In contrast, the accumulation of jasmonates (JA), known to control VOCs in higher plants, and transcript levels of primary JA response genes, including OsMYC2, were not largely affected by ethylene application. At the functional level, flooding is known to promote internode elongation in young rice via ethylene signaling. Consistent with the negative role of ethylene on VOC genes, the accumulation of VOCs in water-submerged rice leaves was suppressed. Furthermore, in mature rice plants, which naturally produce less volatiles, VOCs could be rescued by the application of the ethylene perception inhibitor 1-methylcyclopropene. Our data suggest that ethylene acts as an endogenous suppressor of VOCs in rice plants during development and under stress.


Assuntos
Mariposas , Oryza , Compostos Orgânicos Voláteis , Animais , Ciclopentanos , Etilenos , Herbivoria , Oryza/genética , Oxilipinas , Folhas de Planta
4.
Commun Biol ; 3(1): 224, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385340

RESUMO

Plants respond to herbivory by perceiving herbivore danger signal(s) (HDS(s)), including "elicitors", that are present in herbivores' oral secretions (OS) and act to induce defense responses. However, little is known about HDS-specific molecules and intracellular signaling. Here we explored soybean receptor-like kinases (RLKs) as candidates that might mediate HDS-associated RLKs' (HAKs') actions in leaves in response to OS extracted from larvae of a generalist herbivore, Spodoptera litura. Fractionation of OS yielded Frα, which consisted of polysaccharides. The GmHAKs composed of their respective homomultimers scarcely interacted with Frα. Moreover, Arabidopsis HAK1 homomultimers interacted with cytoplasmic signaling molecule PBL27, resulting in herbivory resistance, in an ethylene-dependent manner. Altogether, our findings suggest that HAKs are herbivore-specific RLKs mediating HDS-transmitting, intracellular signaling through interaction with PBL27 and the subsequent ethylene signaling for plant defense responses in host plants.


Assuntos
Arabidopsis/genética , Glycine max/genética , Defesa das Plantas contra Herbivoria/genética , Proteínas de Plantas/genética , Polissacarídeos/fisiologia , Spodoptera/fisiologia , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cadeia Alimentar , Herbivoria , Larva/crescimento & desenvolvimento , Larva/fisiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Glycine max/metabolismo , Spodoptera/crescimento & desenvolvimento
5.
Plant Cell Environ ; 43(9): 2019-2032, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32323332

RESUMO

Interspecific New Rice for Africa (NERICA) varieties have been recently developed and used in Sub-Saharan Africa but herbivore resistance properties of these plants remain poorly understood. Here we report that, compared to a local Japanese cultivar Nipponbare, NERICA 1, 4 and 10 are significantly more damaged by insect herbivores in the paddy fields. In contrast to high levels of leaf damage from rice skippers and grasshoppers, constitutive and induced volatile organic compounds for indirect plant defense were higher or similar in NERICAs and Nipponbare. Accumulation of direct defense secondary metabolites, momilactones A and B, and p-coumaroylputrescine (CoP) was reduced in NERICAs, while feruloylputrescine accumulated at similar levels in all varieties. Finally, we found that Nipponbare leaves were covered with sharp nonglandular trichomes impregnated with silicon but comparable defense structures were virtually absent in herbivory-prone NERICA plants. As damage to the larval gut membranes by Nipponbare silicified trichomes that pass intact through the insect digestive system, occurs, and larval performance is enhanced by trichome removal from otherwise chemically defended Nipponbare plants, we propose that silicified trichomes work as an important defense mechanism of rice against chewing insect herbivores.


Assuntos
Herbivoria , Oryza/fisiologia , Tricomas/fisiologia , Animais , Digestão , Trato Gastrointestinal/ultraestrutura , Insetos , Japão , Larva/crescimento & desenvolvimento , Lepidópteros , Oryza/química , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/fisiologia , Metabolismo Secundário , Tricomas/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
6.
Sci Rep ; 10(1): 5352, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210260

RESUMO

We collected Solidago altissima clones to explore their leaf damage resistance, and as a result identified five accessions that exhibited variable defense abilities against the generalist herbivore Spodoptera litura. In order to characterize molecules involved in such natural variation, we focused on ethylene response factors (ERFs) that exhibited distinct transcription patterns in the leaves of the five accessions (e.g., S1 and S2) after wounding: the transcript of SaERF1 and SaERF2 was induced in wounded S1 and S2 leaves, respectively. Although transcription levels of SaERFs in leaves of the five accessions did not correlate with the accessions' phytohormone levels, these transcription levels accorded with the possibility that ethylene and jasmonate signaling play crucial roles in wound-induced transcription of SaERF1 in S1 leaves, and SaERF2 in S2 leaves, respectively. SaERF1 was found to be a positive regulator of the GCC box and DRE element in the upstream regions of promoters of defense genes, whereas SaERF2 served as a negative regulator of genes controlled through the GCC box. Transgenic Arabidopsis plants expressing SaERF1 or SaERF2 showed enhanced and suppressed transcript levels, respectively, of a defensin gene, indicating that ERFs may be partly responsible for herbivore resistance properties of S. altissima accessions.


Assuntos
Variação Genética , Herbivoria , Proteínas de Plantas/fisiologia , Solidago/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Arabidopsis/genética , Arabidopsis/fisiologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Japão , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Solidago/genética , Spodoptera
7.
Plant Signal Behav ; 14(11): 1655335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31422731

RESUMO

Plants use many natural products to counter pests and diseases in nature. In rice, direct defense mechanisms include broad range of secondary metabolites, such as phenolamides (PA), diterpene phytoalexins, and flavonoid sakuranetin. Recently, accumulation of PAs in rice was shown to be under control of microbial symbionts in honeydew (HD), digestive waste from the rice brown planthopper (Nilaparvata lugens; BPH), but whether HD microbiota can also promote diterpene phytoalexins, momilactone A (MoA) and MoB, has not been reported. Here, we demonstrate that crude HD, but not a filtered one, induces MoA and MoB in rice, suggesting the involvement of BPH-HD endosymbionts. Consequently, microbial strains previously isolated from HD could promote MoA and MoB levels in wounded rice leaves, suggesting that rice indeed responds to BPH by cumulative chemical defense that involves both PA and diterpene phytoalexin pathways.


Assuntos
Cucumis melo/microbiologia , Cucumis melo/parasitologia , Diterpenos/metabolismo , Hemípteros/fisiologia , Lactonas/metabolismo , Oryza/microbiologia , Oryza/parasitologia , Simbiose , Animais , Folhas de Planta/metabolismo
8.
J Exp Bot ; 70(5): 1683-1696, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30715410

RESUMO

Feeding of sucking insects, such as the rice brown planthopper (Nilaparvata lugens; BPH), causes only limited mechanical damage on plants that is otherwise essential for injury-triggered defense responses against herbivores. In pursuit of complementary BPH elicitors perceived by plants, we examined the potential effects of BPH honeydew secretions on the BPH monocot host, rice (Oryza sativa). We found that BPH honeydew strongly elicits direct and putative indirect defenses in rice, namely accumulation of phytoalexins in the leaves, and release of volatile organic compounds from the leaves that serve to attract natural enemies of herbivores, respectively. We then examined the elicitor active components in the honeydew and found that bacteria in the secretions are responsible for the activation of plant defense. Corroborating the importance of honeydew-associated microbiota for induced plant resistance, BPHs partially devoid of their microbiota via prolonged antibiotics ingestion induced significantly less defense in rice relative to antibiotic-free insects applied to similar groups of plants. Our data suggest that rice plants may additionally perceive herbivores via their honeydew-associated microbes, allowing them to discriminate between incompatible herbivores-that do not produce honeydew-and those that are compatible and therefore dangerous.


Assuntos
Cucumis melo/microbiologia , Regulação da Expressão Gênica de Plantas/imunologia , Hemípteros/fisiologia , Herbivoria , Oryza/imunologia , Doenças das Plantas/imunologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA