Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(8)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39194633

RESUMO

Brucellosis in animals is an infectious disease caused by bacteria of the genus Brucella. Known methods for diagnosing brucellosis face some challenges, due to the difficulties in isolating and standardizing the natural brucellosis antigen. In this work, we investigated the possibility of using the fluorescence polarization assay (FPA) with synthetic glycoconjugate biosensing tracers to detect antibodies against Brucella as a new methodology for diagnosing brucellosis. Based on the received results, the synthetic fluorescein-labeled trisaccharide tracer is most effective for Brucellosis detection. This tracer is structurally related to the immune determinant fragment of the Brucella LPS buildup of N-formyl-d-perosamine units, connected via α-(1→3)-linkage at the non-reducing end and α-(1→2)-linkage at the reducing end. The sensitivity and specificity in the case of the use of trisaccharide tracer 3b were 71% and 100% (Yuden's method) and 87% and 88% (Euclidean method), respectively, which is comparable with the diagnostic efficiency of traditionally used serological methods, such as the agglutination test (AT), complement fixation test (CFT), and Rose Bengal test (RBT). Given the known advantages of FPA (e.g., speed, compactness of the equipment, and standard reagents) and the increased specificity of the developed test system, it would be appropriate to consider its widespread use for the diagnosis of brucellosis in animals, including rapid testing in the field.


Assuntos
Técnicas Biossensoriais , Brucella , Brucelose , Oligossacarídeos , Brucelose/diagnóstico , Técnicas Biossensoriais/métodos , Animais , Polarização de Fluorescência , Corantes Fluorescentes
2.
Front Biosci (Elite Ed) ; 16(1): 4, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38538523

RESUMO

Elevated concentrations of toxic organic compounds observed in food products pose serious dangers to human health. Both natural and artificial pollutants can cause food contamination. The stages of food production, packaging, transportation, and storage can also largely cause the appearance of undesirable substances in food products. The health consequences of ingesting food containing toxic contaminants range from mild gastroenteritis to deaths resulting from dysfunctional internal organs and neurological syndromes. The World Health Organization (WHO) sets recommendations for the content of such chemicals in food, including a minimum allowable concentration considered safe for human consumption. However, the control of food products from chemical pollutants is necessary. Moreover, fast, sensitive, and inexpensive methods are needed to detect them at the point of need. Currently, immune analysis methods are most widely used to determine pollutants in food. The development of fluorescence polarization immunoassay (FPIA) methods in a competitive format is a powerful and modern tool for detecting organic molecules in various matrices, thereby making FPIA methods useful for food safety applications. Due to the availability of portable devices for measuring the fluorescence polarization signal, FPIA methods can be used at the point of need. The variety of fluorescent labels and recognizing elements (receptors, monoclonal and polyclonal antibodies, and nanobodies) permits fluorescence polarization (FP) assays to detect significantly lower limits of organic substances. The FP assay is a homogeneous, fast, and quantitative method. The development of various formats of FP assays makes them promising in determining food pollutants. This review summarizes publications on FP analyses for detecting organic contaminants (pesticides, hormones, toxins, antibiotics, and other pharmaceuticals) in food products during 2018-2023. Further, it demonstrates the prospects for using this method to determine pollutants at the point of need and for detecting high molecular weight substances, fungi, and bacterial infections during food safety inspections.


Assuntos
Poluentes Ambientais , Inocuidade dos Alimentos , Humanos , Imunoensaio de Fluorescência por Polarização/métodos , Polarização de Fluorescência , Anticorpos
3.
Biomolecules ; 14(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397407

RESUMO

Lysozyme is a well-known enzyme found in many biological fluids which plays an important role in the antibacterial protection of humans and animals. Lysozyme assays are used for the diagnosis of a number of diseases and utilized in immunohistochemistry, genetic and cellular engineering studies. The assaying methods are divided into two categories measuring either the concentration of lysozyme as a protein or its activity as an enzyme. While the first category of methods traditionally uses an enzyme-linked immunosorbent assay (ELISA), the methods for the determination of the enzymatic activity of lysozyme use either live bacteria, which is rather inconvenient, or natural peptidoglycans of high heterogeneity and variability, which leads to the low reproducibility of the assay results. In this work, we propose the use of a chemically synthesized substrate of a strictly defined structure to measure in a single experiment both the concentration of lysozyme as a protein and its enzymatic activity by means of the fluorescence polarization (FP) method. Chito-oligosaccharides of different chain lengths were fluorescently labeled and tested leading to the selection of the pentasaccharide as the optimal size tracer and the further optimization of the assay conditions for the accurate (detection limit 0.3 µM) and rapid (<30 min) determination of human lysozyme. The proposed protocol was applied to assay human lysozyme in tear samples and resulted in good correlation with the reference assay. The use of synthetic fluorescently labeled tracer, in contrast to natural peptidoglycan, in FP analysis allows for the development of a reproducible method for the determination of lysozyme activity.


Assuntos
Quitosana , Muramidase , Oligossacarídeos , Animais , Humanos , Quitosana/química , Indicadores e Reagentes/química , Muramidase/análise , Oligossacarídeos/química , Reprodutibilidade dos Testes
4.
Biosensors (Basel) ; 13(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38131765

RESUMO

Dibutyl phthalate (DBP) is widely used as a plasticizer in the production of polymeric materials to give them flexibility, strength and extensibility. However, due to its negative impact on human health, in particular reproductive functions and fetal development, the content of DBP must be controlled in food and the environment. The present study aims to develop a sensitive, fast and simple fluorescence polarization immunoassay (FPIA) using monoclonal antibodies derived against DBP (MAb-DBP) for its detection in open waters. New conjugates of DBP with various fluorescein derivatives were obtained and characterized: 5-aminomethylfluorescein (AMF) and dichlorotriazinylaminofluorescein (DTAF). The advantages of using the DBP-AMF conjugate in the FPIA method are shown, the kinetics of binding of this chemical with antibodies are studied, the analysis is optimized, and the concentration of monoclonal antibodies is selected for sensitivity analysis-16 nM. The calibration dependence of the fluorescence polarization signal for the detection of DBP was obtained. The observed IC50 (DBP concentration at which a 50% decrease in the fluorescence polarization signal occurs, 40 ng/mL) and the limit of detection (LOD, 7.5 ng/mL) values were improved by a factor of 45 over the previously described FPIA using polyclonal antibodies. This technique was tested by the recovery method, and the high percentage of DBP discovery in water ranged from 85 to 110%. Using the developed method, real water samples from Lake Onega were tested, and a good correlation was shown between the results of the determination of DBP by the FPIA method and GC-MS. Thus, the FPIA method developed in this work can be used to determine DBP in open-water reservoirs.


Assuntos
Dibutilftalato , Água , Humanos , Dibutilftalato/análise , Imunoensaio de Fluorescência por Polarização/métodos , Anticorpos Monoclonais , Cromatografia Gasosa-Espectrometria de Massas
5.
Biosensors (Basel) ; 13(4)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37185552

RESUMO

In this study, a homogeneous fluorescence polarization immunoassay (FPIA) for the detection of hazardous aquatic toxin okadaic acid (OA) contaminating environmental waters was for the first time developed. A conjugate of the analyte with a fluorophore based on a fluorescein derivative (tracer) was synthesized, and its interaction with specific anti-OA monoclonal antibodies (MAbs) was tested. A MAbs-tracer pair demonstrated highly affine immune binding (KD = 0.8 nM). Under optimal conditions, the limit of OA detection in the FPIA was 0.08 ng/mL (0.1 nM), and the working range of detectable concentrations was 0.4-72.5 ng/mL (0.5-90 nM). The developed FPIA was approbated for the determination of OA in real matrices: river water and seawater samples. No matrix effect of water was observed; therefore, no sample preparation was required before analysis. Due to this factor, the entire analytical procedure took less than 10 min. Using a compact portable fluorescence polarization analyzer enables the on-site testing of water samples. The developed analysis is very fast, easy to operate, and sensitive and can be extended to the determination of other aquatic toxins or low-molecular-weight water or food contaminants.


Assuntos
Anticorpos Monoclonais , Água , Imunoensaio de Fluorescência por Polarização/métodos , Ácido Okadáico , Fluoresceína
6.
Food Chem ; 360: 130020, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34000636

RESUMO

Peptides obtained from phage display libraries are valuable reagents for small-molecule immunoassays. However, their application in fluorescence polarization immunoassays (FPIAs) is limited by phage particles. Here, monomer, dendrimer-like dimer, tetramer peptidomimetic and anti-immunocomplex tracers were designed and synthesized using lysine as special scaffolds and spacers to develop competitive and noncompetitive FPIAs for benzothiostrobin. The affinity between tracers and monoclonal antibodies or immunocomplexes increased with the tracer valence. A higher signal-to-noise ratio and sensitivity could be generated in the FPIAs based on tetramer tracers. The sensitivities of competitive (50% inhibitory concentration) and noncompetitive (50% saturation concentration) FPIAs were 19.71 ± 4.65 and 40.43 ± 2.73 ng mL-1, respectively. The spiked recoveries were 78.3%-105.2% with relative standard deviations (RSDs) of 0.7%-15.4% for the competitive FPIA, while 78.7%-115.3% with RSDs of 0.7%-12.5% for the noncompetitive FPIA. The amounts of benzothiostrobin in rice detected by the FPIAs were consistent with those detected by high performance liquid chromatography.


Assuntos
Acrilatos/análise , Benzotiazóis/análise , Dendrímeros/química , Fluoresceína-5-Isotiocianato/química , Imunoensaio de Fluorescência por Polarização/métodos , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA