Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Methods Mol Biol ; 2757: 491-508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668980

RESUMO

Transcription factors (TFs) play a pivotal role as regulators of gene expression, orchestrating the formation and maintenance of diverse animal body plans and innovations. However, the precise contributions of TFs and the underlying mechanisms driving the origin of basal metazoan body plans, particularly in ctenophores, remain elusive. Here, we present a comprehensive catalog of TFs in 2 ctenophore species, Pleurobrachia bachei and Mnemiopsis leidyi, revealing 428 and 418 TFs in their respective genomes. In contrast, morphologically simpler metazoans have a reduced TF representation compared to ctenophores, cnidarians, and bilaterians: the sponge Amphimedon encodes 277 TFs, and the placozoan Trichoplax adhaerens encodes 274 TFs. The emergence of complex ctenophore tissues and organs coincides with significant lineage-specific diversification of the zinc finger C2H2 (ZF-C2H2) and homeobox superfamilies of TFs. Notable, the lineages leading to Amphimedon and Trichoplax exhibit independent expansions of leucine zipper (BZIP) TFs. Some lineage-specific TFs may have evolved through the domestication of mobile elements, thereby supporting alternative mechanisms of parallel TF evolution and body plan diversification across the Metazoa.


Assuntos
Ctenóforos , Evolução Molecular , Filogenia , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ctenóforos/genética , Ctenóforos/metabolismo , Genoma , Placozoa/genética , Placozoa/metabolismo
2.
Front Neurosci ; 17: 1125433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034176

RESUMO

Nitric oxide (NO) is one of the most ancient and versatile signal molecules across all domains of life. NO signaling might also play an essential role in the origin of animal organization. Yet, practically nothing is known about the distribution and functions of NO-dependent signaling pathways in representatives of early branching metazoans such as Ctenophora. Here, we explore the presence and organization of NO signaling components using Mnemiopsis and kin as essential reference species. We show that NO synthase (NOS) is present in at least eight ctenophore species, including Euplokamis and Coeloplana, representing the most basal ctenophore lineages. However, NOS could be secondarily lost in many other ctenophores, including Pleurobrachia and Beroe. In Mnemiopsis leidyi, NOS is present both in adult tissues and differentially expressed in later embryonic stages suggesting the involvement of NO in developmental mechanisms. Ctenophores also possess soluble guanylyl cyclases as potential NO receptors with weak but differential expression across tissues. Combined, these data indicate that the canonical NO-cGMP signaling pathways existed in the common ancestor of animals and could be involved in the control of morphogenesis, cilia activities, feeding and different behaviors.

3.
Front Cell Dev Biol ; 11: 1113046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960413

RESUMO

Transposable elements (TE) could serve as sources of new transcription factors (TFs) in plants and some other model species, but such evidence is lacking for most animal lineages. Here, we discovered multiple independent co-options of TEs to generate 788 TFs across Metazoa, including all early-branching animal lineages. Six of ten superfamilies of DNA transposon-derived conserved TF families (ZBED, CENPB, FHY3, HTH-Psq, THAP, and FLYWCH) were identified across nine phyla encompassing the entire metazoan phylogeny. The most extensive convergent domestication of potentially TE-derived TFs occurred in the hydroid polyps, polychaete worms, cephalopods, oysters, and sea slugs. Phylogenetic reconstructions showed species-specific clustering and lineage-specific expansion; none of the identified TE-derived TFs revealed homologs in their closest neighbors. Together, our study established a framework for categorizing TE-derived TFs and informing the origins of novel genes across phyla.

4.
Front Microbiol ; 13: 797463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464978

RESUMO

Mandarin orange is economically one of the most important fruit crops in Bhutan. However, in recent years, orange productivity has dropped due to severe infection of citrus tristeza virus (CTV) associated with the gradual decline of citrus orchards. Although the disease incidence has been reported, very limited information is available on genetic variability among the Bhutanese CTV variants. This study used reverse transcription PCR (RT-PCR) to detect CTV in collected field samples and recorded disease incidence up to 71.11% in Bhutan's prominent citrus-growing regions. To elucidate the extent of genetic variabilities among the Bhutanese CTV variants, we targeted four independent genomic regions (5'ORF1a, p25, p23, and p18) and analyzed a total of 64 collected isolates. These genomic regions were amplified and sequenced for further comparative bioinformatics analysis. Comprehensive phylogenetic reconstructions of the GenBank deposited sequences, including the corresponding genomic locations from 53 whole-genome sequences, revealed unexpected and rich diversity among Bhutanese CTV variants. A resistant-breaking (RB) variant was also identified for the first time from the Asian subcontinent. Our analyses unambiguously identified five (T36, T3, T68, VT, and HA16-5) major, well-recognized CTV strains. Bhutanese CTV variants form two additional newly identified distinct clades with higher confidence, B1 and B2, named after Bhutan. The origin of each of these nine clades can be traced back to their root in the north-eastern region of India and Bhutan. Together, our study established a definitive framework for categorizing global CTV variants into their distinctive clades and provided novel insights into multiple genomic region-based genetic diversity assessments, including their pathogenicity status.

5.
Sci Rep ; 8(1): 17421, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30479355

RESUMO

Recently, human PAIRED-LIKE homeobox transcription factor (TF) genes were discovered whose expression is limited to the period of embryo genome activation up to the 8-cell stage. One of these TFs is LEUTX, but its importance for human embryogenesis is still subject to debate. We confirmed that human LEUTX acts as a TAATCC-targeting transcriptional activator, like other K50-type PAIRED-LIKE TFs. Phylogenetic comparisons revealed that Leutx proteins are conserved across Placentalia and comprise two conserved domains, the homeodomain, and a Leutx-specific domain containing putative transcriptional activation motifs (9aaTAD). Examination of human genotype resources revealed 116 allelic variants in LEUTX. Twenty-four variants potentially affect function, but they occur only heterozygously at low frequency. One variant affects a DNA-specificity determining residue, mutationally reachable by a one-base transition. In vitro and in silico experiments showed that this LEUTX mutation (alanine to valine at position 54 in the homeodomain) results in a transactivational loss-of-function to a minimal TAATCC-containing promoter and a 36 bp motif enriched in genes involved in embryo genome activation. A compensatory change in residue 47 restores function. The results support the notion that human LEUTX functions as a transcriptional activator important for human embryogenesis.


Assuntos
Proteínas de Homeodomínio/genética , Mutação , Filogenia , Animais , Sequência Conservada , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Humanos , Regiões Promotoras Genéticas , Ativação Transcricional
6.
Nat Ecol Evol ; 1(11): 1783, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29044116

RESUMO

In the version of this Article originally published the location of Punta Arenas was incorrect and should have read 'Chile' in Figures 3-5 and in the Supplementary Information. This has been corrected in all versions of the Article.

7.
Nat Ecol Evol ; 1(11): 1737-1746, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28993654

RESUMO

Ctenophora, comprising approximately 200 described species, is an important lineage for understanding metazoan evolution and is of great ecological and economic importance. Ctenophore diversity includes species with unique colloblasts used for prey capture, smooth and striated muscles, benthic and pelagic lifestyles, and locomotion with ciliated paddles or muscular propulsion. However, the ancestral states of traits are debated and relationships among many lineages are unresolved. Here, using 27 newly sequenced ctenophore transcriptomes, publicly available data and methods to control systematic error, we establish the placement of Ctenophora as the sister group to all other animals and refine the phylogenetic relationships within ctenophores. Molecular clock analyses suggest modern ctenophore diversity originated approximately 350 million years ago ± 88 million years, conflicting with previous hypotheses, which suggest it originated approximately 65 million years ago. We recover Euplokamis dunlapae-a species with striated muscles-as the sister lineage to other sampled ctenophores. Ancestral state reconstruction shows that the most recent common ancestor of extant ctenophores was pelagic, possessed tentacles, was bioluminescent and did not have separate sexes. Our results imply at least two transitions from a pelagic to benthic lifestyle within Ctenophora, suggesting that such transitions were more common in animal diversification than previously thought.


Assuntos
Ctenóforos/classificação , Filogenia , Transcriptoma , Animais , Evolução Biológica , Ctenóforos/anatomia & histologia , Ctenóforos/genética , Evolução Molecular , Análise de Sequência de DNA
8.
PLoS One ; 10(9): e0137276, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26356745

RESUMO

The RIG-like receptors (RLRs) are related proteins that identify viral RNA in the cytoplasm and activate cellular immune responses, primarily through direct protein-protein interactions with the signal transducer, IPS1. Although it has been well established that the RLRs, RIG-I and MDA5, activate IPS1 through binding between the twin caspase activation and recruitment domains (CARDs) on the RLR and a homologous CARD on IPS1, it is less clear which specific RLR CARD(s) are required for this interaction, and almost nothing is known about how the RLR-IPS1 interaction evolved. In contrast to what has been observed in the presence of immune-modulating K63-linked polyubiquitin, here we show that-in the absence of ubiquitin-it is the first CARD domain of human RIG-I and MDA5 (CARD1) that binds directly to IPS1 CARD, and not the second (CARD2). Although the RLRs originated in the earliest animals, both the IPS1 gene and the twin-CARD domain architecture of RIG-I and MDA5 arose much later in the deuterostome lineage, probably through a series of tandem partial-gene duplication events facilitated by tight clustering of RLRs and IPS1 in the ancestral deuterostome genome. Functional differentiation of RIG-I CARD1 and CARD2 appears to have occurred early during this proliferation of RLR and related CARDs, potentially driven by adaptive coevolution between RIG-I CARD domains and IPS1 CARD. However, functional differentiation of MDA5 CARD1 and CARD2 occurred later. These results fit a general model in which duplications of protein-protein interaction domains into novel gene contexts could facilitate the expansion of signaling networks and suggest a potentially important role for functionally-linked gene clusters in generating novel immune-signaling pathways.


Assuntos
Antivirais/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Evolução Molecular , Duplicação Gênica , Transdução de Sinais , Animais , Proteínas Adaptadoras de Sinalização CARD/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Ubiquitina/metabolismo
9.
PLoS One ; 10(5): e0126947, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26024448

RESUMO

Homeobox genes play crucial roles for the development of multicellular eukaryotes. We have generated a revised list of all homeobox genes for Caenorhabditis elegans and provide a nomenclature for the previously unnamed ones. We show that, out of 103 homeobox genes, 70 are co-orthologous to human homeobox genes. 14 are highly divergent, lacking an obvious ortholog even in other Caenorhabditis species. One of these homeobox genes encodes 12 homeodomains, while three other highly divergent homeobox genes encode a novel type of double homeodomain, termed HOCHOB. To understand how transcription factors regulate cell fate during development, precise spatio-temporal expression data need to be obtained. Using a new imaging framework that we developed, Endrov, we have generated spatio-temporal expression profiles during embryogenesis of over 60 homeobox genes, as well as a number of other developmental control genes using GFP reporters. We used dynamic feedback during recording to automatically adjust the camera exposure time in order to increase the dynamic range beyond the limitations of the camera. We have applied the new framework to examine homeobox gene expression patterns and provide an analysis of these patterns. The methods we developed to analyze and quantify expression data are not only suitable for C. elegans, but can be applied to other model systems or even to tissue culture systems.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Genes Homeobox , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/fisiologia , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Organismos Geneticamente Modificados/embriologia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Terminologia como Assunto
10.
Phytopathology ; 105(8): 1043-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25760522

RESUMO

Citrus huanglongbing (HLB, citrus greening disease) is an extremely destructive disease affecting citrus and causes severe economic loss to the crop yield worldwide. The disease is caused by a phloem-limited, noncultured, gram-negative bacteria Candidatus Liberibacter spp., the widely present and most destructive species being 'Candidatus Liberibacter asiaticus'. Although the disease has been reported from almost all citrus growing regions of India, knowledge on the molecular variability of the pathogen 'Ca. L. asiaticus' populations from different geographical regions and cultivars is limited. In the present study, variability of the Indian 'Ca. L. asiaticus' based on the tandem repeats at the genomic locus CLIBASIA_01645 was characterized and categorized into four classes based on the tandem repeat number (TRN); Class I (TRN≤5), Class II (TRN>5≤10), Class III (TRN>10≤15), and Class IV (TRN>15). The study revealed that the Indian population of 'Ca. L. asiaticus' is more diverse than reported for Florida and Guangdong populations, which showed less diversity. While Florida and Guangdong populations were dominated by a TRN5 and TRN7 genotype, respectively, the Indian 'Ca. L. asiaticus' populations with TRN copy numbers 9, 10, 11, 12, and 13 were widely distributed throughout the country. Additionally, TRN2 and TRN17 genotypes were also observed among the Indian 'Ca. L. asiaticus' populations. The predominant 'Ca. L. asiaticus' genotypes from the northeastern region of India were TRN6 and TRN7 (53.12%) and surprisingly similar to neighboring South China populations. Preliminary results showed absence of preference of citrus cultivars to any specific 'Ca. L. asiaticus' genotype.


Assuntos
Citrus/microbiologia , Variação Genética , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Sequências de Repetição em Tandem/genética , Sequência de Bases , DNA Bacteriano/genética , Loci Gênicos/genética , Genótipo , Geografia , Dados de Sequência Molecular , Floema/microbiologia , Análise de Sequência de DNA
11.
BMC Plant Biol ; 14: 204, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25084677

RESUMO

BACKGROUND: The Maternally expressed gene (Meg) family is a locally-duplicated gene family of maize which encodes cysteine-rich proteins (CRPs). The founding member of the family, Meg1, is required for normal development of the basal endosperm transfer cell layer (BETL) and is involved in the allocation of maternal nutrients to growing seeds. Despite the important roles of Meg1 in maize seed development, the evolutionary history of the Meg cluster and the activities of the duplicate genes are not understood. RESULTS: In maize, the Meg gene cluster resides in a 2.3 Mb-long genomic region that exhibits many features of non-centromeric heterochromatin. Using phylogenetic reconstruction and syntenic alignments, we identified the pedigree of the Meg family, in which 11 of its 13 members arose in maize after allotetraploidization ~4.8 mya. Phylogenetic and population-genetic analyses identified possible signatures suggesting recent positive selection in Meg homologs. Structural analyses of the Meg proteins indicated potentially adaptive changes in secondary structure from α-helix to ß-strand during the expansion. Transcriptomic analysis of the maize endosperm indicated that 6 Meg genes are selectively activated in the BETL, and younger Meg genes are more active than older ones. In endosperms from B73 by Mo17 reciprocal crosses, most Meg genes did not display parent-specific expression patterns. CONCLUSIONS: Recently-duplicated Meg genes have different protein secondary structures, and their expressions in the BETL dominate over those of older members. Together with the signs of positive selections in the young Meg genes, these results suggest that the expansion of the Meg family involves potentially adaptive transitions in which new members with novel functions prevailed over older members.


Assuntos
Endosperma/genética , Genes Duplicados , Família Multigênica , Zea mays/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Seleção Genética , Transcriptoma
12.
Nature ; 510(7503): 109-14, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24847885

RESUMO

The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of 'classical' neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.


Assuntos
Ctenóforos/genética , Evolução Molecular , Genoma/genética , Sistema Nervoso , Animais , Ctenóforos/classificação , Ctenóforos/imunologia , Ctenóforos/fisiologia , Genes Controladores do Desenvolvimento , Genes Homeobox , Mesoderma/metabolismo , Metabolômica , MicroRNAs , Dados de Sequência Molecular , Músculos/fisiologia , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Neurotransmissores , Filogenia , Transcriptoma/genética
13.
Mol Biol Evol ; 31(1): 140-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24109602

RESUMO

Animals deploy various molecular sensors to detect pathogen infections. RIG-like receptor (RLR) proteins identify viral RNAs and initiate innate immune responses. The three human RLRs recognize different types of RNA molecules and protect against different viral pathogens. The RLR protein family is widely thought to have originated shortly before the emergence of vertebrates and rapidly diversified through a complex process of domain grafting. Contrary to these findings, here we show that full-length RLRs and their downstream signaling molecules were present in the earliest animals, suggesting that the RLR-based immune system arose with the emergence of multicellularity. Functional differentiation of RLRs occurred early in animal evolution via simple gene duplication followed by modifications of the RNA-binding pocket, many of which may have been adaptively driven. Functional analysis of human and ancestral RLRs revealed that the ancestral RLR displayed RIG-1-like RNA-binding. MDA5-like binding arose through changes in the RNA-binding pocket following the duplication of the ancestral RLR, which may have occurred either early in Bilateria or later, after deuterostomes split from protostomes. The sensitivity and specificity with which RLRs bind different RNA structures has repeatedly adapted throughout mammalian evolution, suggesting a long-term evolutionary arms race with viral RNA or other molecules.


Assuntos
Evolução Molecular , Imunidade Inata , Filogenia , Vertebrados/imunologia , Vertebrados/virologia , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Fases de Leitura Aberta , Conformação Proteica , RNA Helicases/genética , RNA Helicases/imunologia , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Alinhamento de Sequência , Vertebrados/classificação
14.
Artigo em Inglês | MEDLINE | ID: mdl-24010126

RESUMO

The Bardet-Biedl Syndrome (BBS) is a human developmental disorder that has been associated with fourteen BBS genes affecting the development of cilia. Three BBS genes are distant relatives of chaperonin proteins, a family of chaperones well known for the protein-folding role of their double-ringed complexes. Chaperonin-like BBS genes were originally thought to be vertebrate-specific, but related genes from different metazoan species have been identified as chaperonin-like BBS genes based on sequence similarity. Our phylogenetic analyses confirmed the classification of these genes in the chaperonin-like BBS gene family, and set the origin of the gene family earlier than the time of separation of Bilateria, Cnidaria, and Placozoa. By extensive searches of chaperonin-like genes in complete genomes representing several eukaryotic lineages, we discovered the presence of chaperonin-like BBS genes also in the genomes of Phytophthora and Pythium, belonging to the group of Oomycetes. This finding suggests that the chaperonin-like BBS gene family had already evolved before the origin of Metazoa, as early in eukaryote evolution as before separation of the lineages of Unikonts and Chromalveolates. The analysis of coding sequences indicated that chaperonin-like BBS proteins have evolved in all lineages under constraining selection. Furthermore, analysis of the predicted structural features suggested that, despite their high rate of divergence, chaperonin-like BBS proteins mostly conserve a typical chaperonin-like three-dimensional structure, but question their ability to assemble and function as chaperonin-like double-ringed complexes.

15.
Mol Biol Evol ; 30(3): 627-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23180579

RESUMO

RNA interference (RNAi) is a eukaryotic molecular system that serves two primary functions: 1) gene regulation and 2) protection against selfish elements such as viruses and transposable DNA. Although the biochemistry of RNAi has been detailed in model organisms, very little is known about the broad-scale patterns and forces that have shaped RNAi evolution. Here, we provide a comprehensive evolutionary analysis of the Dicer protein family, which carries out the initial RNA recognition and processing steps in the RNAi pathway. We show that Dicer genes duplicated and diversified independently in early animal and plant evolution, coincident with the origins of multicellularity. We identify a strong signature of long-term protein-coding adaptation that has continually reshaped the RNA-binding pocket of the plant Dicer responsible for antiviral immunity, suggesting an evolutionary arms race with viral factors. We also identify key changes in Dicer domain architecture and sequence leading to specialization in either gene-regulatory or protective functions in animal and plant paralogs. As a whole, these results reveal a dynamic picture in which the evolution of Dicer function has driven elaboration of parallel RNAi functional pathways in animals and plants.


Assuntos
Evolução Molecular , Proteínas de Plantas/genética , Ribonuclease III/genética , Adaptação Biológica/genética , Sequência de Aminoácidos , Animais , Teorema de Bayes , Domínio Catalítico , Sequência Conservada , Duplicação Gênica , Funções Verossimilhança , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Plantas/enzimologia , Plantas/genética , Ligação Proteica , Interferência de RNA , Ribonuclease III/química , Seleção Genética , Análise de Sequência de Proteína , Propriedades de Superfície
16.
BMC Evol Biol ; 10: 64, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20193073

RESUMO

BACKGROUND: Chaperonin proteins are well known for the critical role they play in protein folding and in disease. However, the recent identification of three diverged chaperonin paralogs associated with the human Bardet-Biedl and McKusick-Kaufman Syndromes (BBS and MKKS, respectively) indicates that the eukaryotic chaperonin-gene family is larger and more differentiated than previously thought. The availability of complete genome sequences makes possible a definitive characterization of the complete set of chaperonin sequences in human and other species. RESULTS: We identified fifty-four chaperonin-like sequences in the human genome and similar numbers in the genomes of the model organisms mouse and rat. In mammal genomes we identified, besides the well-known CCT chaperonin genes and the three genes associated with the MKKS and BBS pathological conditions, a newly-defined class of chaperonin genes named CCT8L, represented in human by the two sequences CCT8L1 and CCT8L2. Comparative analyses from several vertebrate genomes established the monophyletic origin of chaperonin-like MKKS and BBS genes from the CCT8 lineage. The CCT8L gene originated from a later duplication also in the CCT8 lineage at the onset of mammal evolution and duplicated in primate genomes. The functionality of CCT8L genes in different species was confirmed by evolutionary analyses and in human by expression data. Detailed sequence analysis and structural predictions of MKKS, BBS and CCT8L proteins strongly suggested that they conserve a typical chaperonin-like core structure but that they are unlikely to form a CCT-like oligomeric complex. The characterization of many newly-discovered chaperonin pseudogenes uncovered the intense duplication activity of eukaryotic chaperonin genes. CONCLUSIONS: In vertebrates, chaperonin genes, driven by intense duplication processes, have diversified into multiple classes and functionalities that extend beyond their well-known protein-folding role as part of the typical oligomeric chaperonin complex, emphasizing previous observations on the involvement of individual CCT monomers in microtubule elongation. The functional characterization of newly identified chaperonin genes will be a challenge for future experimental analyses.


Assuntos
Chaperoninas/genética , Evolução Molecular , Trifosfato de Adenosina/metabolismo , Animais , Chaperoninas/metabolismo , Duplicação Gênica , Humanos , Camundongos , Dobramento de Proteína , Ratos
17.
Mol Biol Evol ; 26(12): 2775-94, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19734295

RESUMO

The full complement of homeobox transcription factor sequences, including genes and pseudogenes, was determined from the analysis of 10 complete genomes from flowering plants, moss, Selaginella, unicellular green algae, and red algae. Our exhaustive genome-wide searches resulted in the discovery in each class of a greater number of homeobox genes than previously reported. All homeobox genes can be unambiguously classified by sequence evolutionary analysis into 14 distinct classes also characterized by conserved intron-exon structure and by unique codomain architectures. We identified many new genes belonging to previously defined classes (HD-ZIP I to IV, BEL, KNOX, PLINC, WOX). Other newly identified genes allowed us to characterize PHD, DDT, NDX, and LD genes as members of four new evolutionary classes and to define two additional classes, which we named SAWADEE and PINTOX. Our comprehensive analysis allowed us to identify several newly characterized conserved motifs, including novel zinc finger motifs in SAWADEE and DDT. Members of the BEL and KNOX classes were found in Chlorobionta (green plants) and in Rhodophyta. We found representatives of the DDT, WOX, and PINTOX classes only in green plants, including unicellular green algae, moss, and vascular plants. All 14 homeobox gene classes were represented in flowering plants, Selaginella, and moss, suggesting that they had already differentiated in the last common ancestor of moss and vascular plants.


Assuntos
Evolução Molecular , Genes Homeobox/genética , Genes de Plantas/genética , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/genética , Plantas/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Proteínas de Homeodomínio/química , Íntrons/genética , Zíper de Leucina/genética , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Dedos de Zinco/genética
18.
J Mol Evol ; 65(2): 137-53, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17665086

RESUMO

TALE homeodomain proteins are an ancient subgroup within the group of homeodomain transcription factors that play important roles in animal, plant, and fungal development. We have extracted the full complement of TALE superclass homeobox genes from the genome projects of seven protostomes, seven deuterostomes, and Nematostella. This was supplemented with TALE homeobox genes from additional species and phylogenetic analyses were carried out with 276 sequences. We found 20 homeobox genes and 4 pseudogenes in humans, 21 genes in mouse, 8 genes in Drosophila, and 5 genes plus one truncated gene in Caenorhabditis elegans. Apart from the previously identified TALE classes MEIS, PBC, IRO, and TGIF, a novel class is identified, termed MOHAWK (MKX). Further, we show that the MEIS class can be divided into two families, PREP and MEIS. Prep genes have previously only been described in vertebrates but are lacking in Drosophila. Here we identify orthologues in other insect taxa as well as in the cnidarian Nematostella. In C. elegans, a divergent Prep protein has lost the homeodomain. Full-length multiple sequence alignment of the protostome and deuterostome sequences allowed us to identify several novel conserved motifs within the MKX, TGIF, and MEIS classes. Phylogenetic analyses revealed fast-evolving PBC class genes; in particular, some X-linked PBC genes in nematodes are subject to rapid evolution. In addition, several instances of gene loss were identified. In conclusion, our comprehensive analysis provides a defining framework for the classification of animal TALE homeobox genes and the understanding of their evolution.


Assuntos
Sequência Conservada/genética , Evolução Molecular , Genes Homeobox , Proteínas de Homeodomínio/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Filogenia , Seleção Genética , Homologia de Sequência de Aminoácidos
19.
Plant Physiol ; 140(4): 1142-50, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16607028

RESUMO

Homeodomain (HD) proteins play important roles in the development of plants, fungi, and animals. Here we identify a novel domain, MEKHLA, in the C terminus of HD-Leu zipper (HD-ZIP) III plant HD proteins that shares similarity with a group of bacterial proteins and a protein from the green alga Chlamydomonas reinhardtii. The group of bacterial MEKHLA proteins is found in cyanobacteria and other bacteria often found associated with plants. Phylogenetic analysis suggests that a MEKHLA protein transferred, possibly from a cyanobacterium or an early chloroplast, into the nuclear genome of an early plant in a first step, and attached itself to the C terminus of an HD-ZIP IV homeobox gene in a second step. Further position-specific iterated-BLAST searches with the bacterial MEKHLA proteins revealed a subregion within the MEKHLA domain that shares significant similarity with the PAS domain. The PAS domain is a sensory module found in many proteins through all kingdoms of life. It is involved in light, oxygen, and redox potential sensation. The fact that HD-ZIP III proteins are transcription factors that have this sensory domain attached to their C terminus uncovers a potential new signaling pathway in plants.


Assuntos
Proteínas de Homeodomínio/química , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chlamydomonas reinhardtii/genética , Evolução Molecular , Genômica , Proteínas de Homeodomínio/genética , Zíper de Leucina , Dados de Sequência Molecular , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência
20.
Dev Dyn ; 235(6): 1469-81, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16502424

RESUMO

The Caenorhabditis elegans genome encodes ten proteins that share similarity with Hedgehog through the C-terminal Hint/Hog domain. While most genes are members of larger gene families, qua-1 is a single copy gene. Here we show that orthologs of qua-1 exist in many nematodes, including Brugia malayi, which shared a common ancestor with C. elegans about 300 million years ago. The QUA-1 proteins contain an N-terminal domain, the Qua domain, that is highly conserved, but whose molecular function is not known. We have studied the expression pattern of qua-1 in C. elegans using a qua-1::GFP transcriptional fusion. qua-1 is mainly expressed in hyp1 to hyp11 hypodermal cells, but not in seam cells. It is also expressed in intestinal and rectal cells, sensilla support cells, and the P cell lineage in L1. The expression of qua-1::GFP undergoes cyclical changes during development in phase with the molting cycle. It accumulates prior to molting and disappears between molts. Disruption of the qua-1 gene function through an internal deletion that causes a frame shift with premature stop in the middle of the gene results in strong lethality. The animals arrest in the early larval stages due to defects in molting. Electron microscopy reveals double cuticles due to defective ecdysis, but no obvious defects are seen in the hypodermis. Qua domain-only::GFP and full-length QUA-1::GFP fusion constructs are secreted and associated with the overlying cuticle, but only QUA-1::GFP rescues the mutant phenotype. Our results suggest that both the Hint/Hog domain and Qua domain are critically required for the function of QUA-1.


Assuntos
Relógios Biológicos/fisiologia , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Proteínas Hedgehog/genética , Muda/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/fisiologia , Feminino , Mutação da Fase de Leitura , Proteínas Hedgehog/biossíntese , Proteínas Hedgehog/fisiologia , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA