Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Analyst ; 149(7): 2170-2179, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38445310

RESUMO

Due to the eutrophication of water bodies around the world, there is a drastic increase in harmful cyanobacterial blooms leading to contamination of water bodies with cyanotoxins. Chronic exposure to cyanotoxins such as microcystin leads to oxidative stress, inflammation, and liver damage, and potentially to liver cancer. We developed a novel and easy-to-use electrochemical impedance spectroscopy-based immunosensor by fabricating stencil-printed conductive carbon-based interdigitated microelectrodes and immobilising them with cysteamine-capped gold nanoparticles embedded in polyaniline. It has been also coupled with a custom handheld device enabling regular on-site assessment, especially in resource-constrained situations encountered in developing countries. The sensor is able to detect microcystin-LR up to 0.1 µg L-1, having a linear response between 0.1 and 100 µg L-1 in lake and river water and in serum and urine samples. In addition to being inexpensive, easy to fabricate, and sensitive, it also has very good selectivity.


Assuntos
Técnicas Biossensoriais , Líquidos Corporais , Toxinas Marinhas , Nanopartículas Metálicas , Microcistinas , Ouro/química , Imunoensaio , Lagos , Água/química , Líquidos Corporais/química
2.
Sci Total Environ ; 892: 164499, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37301389

RESUMO

Heterocyclic polynuclear aromatic hydrocarbons (PAH) are characterized by higher aqueous solubility and enhanced bioavailability due to presence of nitrogen, sulfur or oxygen heteroatoms in their chemical structure and are referred to as nitrogen (PANH), sulfur (PASH) and oxygen (PAOH) heterocyclic PAHs, respectively. Inspite of their significant ecotoxicity and human health impacts, these compounds have not yet been included in the U.S. EPA's list of "priority PAH". The current paper presents a comprehensive review of the environmental fate, various detection techniques and toxicity of heterocyclic PAH compounds, highlighting their significant environmental impacts. Heterocyclic PAHs have been detected at 0.03 to 11,000 ng/L in various aquatic bodies and at 0.1 to 3210 ng/g in contaminated land. PANHs are the most polar heterocyclic PAHs, having aqueous solubility at least 10 to 10,000 times higher than PAH, PASH, and PAOH compounds, which make them more bioavailable. Aquatic fate of heterocyclic PAHs is dominated by volatilization and biodegradation processes for low molecular weight (MW) compounds and photochemical oxidation for high MW compounds. Sorption of heterocyclic PAHs on soil is governed by partitioning to soil organic carbon, cation exchange, and surface complexation mechanisms for PANHs and non-specific interactions, such as van der Waals forces with soil organic carbon for PASHs and PAOHs. Various chromatographic and spectroscopic techniques, such as HPLC and GC, NMR, and TLC have been employed to elucidate their distribution and fate in the environment. PANHs are also the most acutely toxic heterocyclic PAHs with EC50 values ranging from 0.001 to 1100 mg/L in various species of bacteria, algae, yeast, invertebrate, and fish. Heterocyclic PAHs also induce mutagenicity, genotoxicity, carcinogenicity, teratogenicity, and phototoxicity in various aquatic and benthic organisms and terrestrial animals. Compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) and some acridine derivatives are proven human carcinogens and several other heterocyclic PAHs are suspected human carcinogens.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Animais , Humanos , Solo/química , Carbono , Hidrocarbonetos Policíclicos Aromáticos/análise , Invertebrados , Água/análise , Poluentes do Solo/análise , Carcinógenos/análise
4.
Environ Res ; 216(Pt 3): 114659, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328221

RESUMO

Photochemical transformation of pharmaceuticals plays an important role in their natural attenuation, especially in lagoon-based wastewater treatment plants and surface waters receiving substantial sunlight. In this study, the photodegradation of five important pharmaceuticals was studied in samples obtained from a wastewater treatment plant and surface water sources. Batch photodegradation studies for a mixture of pharmaceuticals (diclofenac, sulfamethoxazole, acetaminophen, carbamazepine and gemfibrozil) were carried out in a photochemical reactor. Multiple aliquots of samples removed from the reactor during the experiment were analyzed through high-performance liquid chromatography (HPLC) coupled to a photodiode array (PDA) detector. Intermediate products formed due to photodegradation were identified by ultra-high-performance liquid chromatography coupled with a time-of-flight mass spectrometry (UHPLC-MS/MS). Diclofenac and sulfamethoxazole were found to undergo direct photodegradation due to strong light absorption, whereas the indirect route of photosensitized degradation in the presence of dissolved organic matter (DOM) and model humic acid was significant for acetaminophen, carbamazepine, and gemfibrozil. The reactive radicals such as hydroxyl (OH•), singlet oxygen (1O2) and excited states of DOM (*DOM) were predominantly responsible for the indirect photodegradation of acetaminophen, gemfibrozil and carbamazepine, respectively. Computational analysis revealed that chlorine and carbon atoms belonging to the benzene ring of diclofenac were more reactive to radical attack. Sulfamethoxazole photodegradation occurred through oxidation of the NH2 group. Acetaminophen was more susceptible to electrophilic radical attack at the O-11, and N-7 positions and carbon atoms ortho to the phenolic oxygen and the amine group. The double bonds between C-7, C-8 and C-13 were the most reactive sites for carbamazepine that participated in the phototransformation pathway. Organic matter plays a critical role in the photodegradation of emerging contaminants. The coupling of DFT calculations with UHPLC-MS/MS analysis provided insights on key functional groups participating in the phototransformation pathway. Thus, both parent pharmaceuticals and the photodegradation intermediates should be considered during wastewater treatment.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Fotólise , Águas Residuárias/química , Genfibrozila/análise , Espectrometria de Massas em Tandem , Diclofenaco , Acetaminofen , Poluentes Químicos da Água/análise , Sulfametoxazol , Carbono , Carbamazepina/análise , Preparações Farmacêuticas
5.
J Environ Manage ; 324: 116315, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183530

RESUMO

Oily sludge management is a global environmental concern due to its hazardous nature. Oily sludge obtained from a refinery in India had 19-21% oil content. The oil was highly enriched in the asphaltene fraction. Slurry phase biodegradation of this oily sludge in presence of a 3-membered bacterial consortium was optimized in presence of Triton X-100 to increase the bioavailability of hydrocarbons. Triton X-100 at 4 times the critical micelle concentration (CMC) showed the highest degradation where oil removal of 53.1% was achieved from a 10% sludge slurry over 90 days. GCxGC analysis of n-alkanes present in the oily sludge after the biodegradation study showed an increase in the lower n-alkanes, i.e., dodecane and tridecane over the first 30 days, whereas the higher n-alkanes were removed to a much higher extent. Heptadecane showed the maximum extent of degradation with 94.9% removal in 90 days and an initial degradation rate of 0.079 day-1. The, maximum rate of degradation was observed for pentacosane (0.083 day-1) with 93.7% removal in 90 days. The increase in the lower n-alkanes may be attributed to biotic transformation of the asphaltene fraction which was also confirmed through FTIR and pyrolysis GCxGC analysis. Biodegradation was found to cause changes in the pyrolysis product of asphaltenes where four and three-ring pyrolysis products decreased while the one and two-ring pyrolysis products increased. In presence of the consortium asphaltene removal over 90 days was 12% whereas only 0.4% removal was obtained in the abiotic controls.


Assuntos
Petróleo , Esgotos , Esgotos/microbiologia , Petróleo/análise , Octoxinol/metabolismo , Biodegradação Ambiental , Alcanos/metabolismo , Óleos , Biotransformação
6.
Chemosphere ; 308(Pt 2): 136402, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36103923

RESUMO

Heterogeneous photocatalysis was used for the removal of two widely used organophosphorus pesticides, dichlorvos, and malathion from water. Graphene oxide-TiO2 nanocomposite (GOT) was synthesized and used as a photocatalyst for the removal of these pesticides. Batch studies for optimizing photocatalytic degradation and mineralization of pesticides over 80 min were conducted by varying the pH (2-10), catalyst dose (20 mg/L-200 mg/L), and initial pesticide concentration (0.5 mg/L-20 mg/L), and the irradiation source (125 W UV and visible lamp). Degradation kinetics for the pesticides were evaluated. Ellman assay was used to estimate the toxic effect of pesticides and evaluate toxicity reduction due to treatment. The highest degradation and mineralization of dichlorvos and malathion was observed at pH 6 and the optimum catalyst dose was 60 mg/L. Under UV irradiation, 80% and 90% degradation were observed for dichlorvos and malathion, respectively for 0.5 mg/L initial pesticide concentration. The photocatalytic degradation reaction followed Langmuir-Hinshelwood kinetics. A high degree of mineralization was achieved for both the pesticides. Analysis of the results revealed that the residual toxic effect after photocatalysis was primarily due to the residual parent compound. A comparative study revealed that GOT yielded better pesticide degradation compared to commercially available TiO2 under both UV and visible irradiation.


Assuntos
Nanocompostos , Praguicidas , Poluentes Químicos da Água , Catálise , Diclorvós/química , Diclorvós/toxicidade , Grafite , Malation/toxicidade , Nanocompostos/toxicidade , Compostos Organofosforados , Praguicidas/química , Praguicidas/toxicidade , Fotólise , Titânio/química , Titânio/toxicidade , Água/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
7.
Environ Sci Pollut Res Int ; 29(58): 88089-88100, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35829886

RESUMO

The present study investigated the performance of a chromium-based advanced oxidation process using chromium (as Cr3+ or Cr6+) and H2O2 for the treatment of synthetic and simulated textile wastewaters. With the Cr3+/H2O2 system, the maximum total organic carbon (TOC) and color removals from the synthetic dye wastewater (Remazol Brilliant Violet 5R dye concentration = 100 mg/L) were 75% and 99%, respectively, within 30 min duration ([Cr3+]:[H2O2] = 1:30, stoichiometric H2O2 dose = 2.01 ml/L and pH = 7). Whereas the same catalyst and oxidant combination resulted in chemical oxygen demand (COD) and color removals of ~ 46%, and 84%, respectively, after 3 h of reaction at the optimized reaction conditions (i.e., [Cr3+]:[H2O2] = 1:50, stoichiometric H2O2 dose = 11.6 ml/L and pH = 7) from the simulated textile wastewater (initial pH = 10.2, and COD = 1820 mg/L). Further, the addition of stoichiometric H2O2 dose to the pretreated wastewater and pH adjustment increased the overall COD removal to 77%. Both oxidation and precipitation reactions were found responsible for organics removal from the wastewater. The other alternative involving activated carbon adsorption as second step, was not found as effective as the above scheme. The data on COD removal from simulated textile wastewater could be fit adequately in the retarded first-order kinetic model. Based on the COD and color removal results and preliminary cost analysis, this can be suggested that the Cr3+/H2O2 oxidation process followed by pH adjustment and further H2O2 treatment was the best option for the removal of COD and color from the simulated combined textile wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Peróxido de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Cromo , Hidrogênio , Têxteis , Oxirredução , Indústria Têxtil
8.
Environ Pollut ; 304: 119177, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35346777

RESUMO

Percolation of water through oily sludge during storage and handling of the sludge can cause soil and groundwater contamination. In this study, oily sludge from a refinery was equilibrated with water to obtain the water-soluble fraction (WSF) of oily sludge. The WSF had dissolved organic carbon (DOC) of 166 mg/L. Human cell line-based toxicity assay revealed IC50 of 41 mg/L indicating its toxic nature. The predominant compounds in WSF of oily sludge included isomers of methyl, dimethyl and trimethyl quinolines and naphthalenes along with phenol derivatives and other polynuclear aromatic hydrocarbons (PAHs). Biodegradation of WSF of oily sludge was studied using a consortium of Rhodococcus ruber, Bacillus sp. and Bacillus cereus isolated from the refinery sludge. The consortium of the three strains resulted in 70% degradation over 15 days with a first-order degradation rate of 0.161 day-1. Further analysis of the WSF was performed using the stir-bar sorptive extraction (SBSE) followed by GCxGC-TOF MS employing a PDMS Twister. The GCxGC analysis showed that Bacillus cereus was capable of degrading the quinoline, phenol and naphthalene derivatives in WSF of oily sludge at a faster rate compared to pyridine and benzoquinoline derivatives. Quinoline, phenol, biphenyl, naphthalene, pyridine and benzoquinolines derivatives in the WSF of oily sludge were reduced by 87%, 92%, 88%, 77%, 40% and 62%, respectively with respect to the controls. The WSF of oily sludge contained, n-alkanes, ranging from n-C12 to n-C18 which were removed within 2 days of biodegradation.


Assuntos
Esgotos , Água , Biodegradação Ambiental , Humanos , Óleos , Fenóis , Piridinas
9.
Bioresour Technol ; 341: 125860, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34614557

RESUMO

Heterocyclic polynuclear aromatic hydrocarbons (PAHs) have been detected in all environmental matrices at few ppb to several ppm concentrations and they are characterized by high polarity. Some heterocyclic PAHs are mutagenic and carcinogenic to humans and various organisms. Despite being potent environmental pollutants, these compounds have received less attention. This paper focuses on the sources and occurrence of these compounds and their microbial degradation using diverse species of bacteria, fungi, and algae. Complete removal of 1.8 to 2614 mg/L of nitrogen heterocyclic PAH (PANH), 0.27 to 184 mg/L of sulfur heterocyclic PAH (PASH), and 0.6 to 120 mg/L of oxygen heterocyclic PAH (PAOH) compounds by various microbial species was observed between 3 h and 18 days, 8 h to 6 days, and 4 h to 250 h, respectively under aerobic condition. Strategies for enhancing the removal of heterocyclic PAHs from aquatic systems are also discussed along with the challenges.


Assuntos
Biodegradação Ambiental , Poluição Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Humanos
10.
Nanotechnology ; 33(3)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34633302

RESUMO

Rapid and sustained disinfection of surfaces is necessary to check the spread of pathogenic microbes. The current study proposes a method of synthesis and use of copper nanoparticles (CuNPs) for contact disinfection of pathogenic microorganisms. Polyphenol stabilized CuNPs were synthesized by successive reductive disassembly and reassembly of copper phenolic complexes. Morphological and compositional characterization by transmission electron microscope (TEM), selected area diffraction and electron energy loss spectroscopy revealed monodispersed spherical (ϕ5-8 nm) CuNPs with coexisting Cu, Cu(I) and Cu (II) phases. Various commercial grade porous and non-porous substrates, such as, glass, stainless steel, cloth, plastic and silk were coated with the nanoparticles. Complete disinfection of 107copies of surrogate enveloped and non-enveloped viruses: bacteriophage MS2, SUSP2, phi6; and gram negative as well as gram positive bacteria:Escherichia coliandStaphylococcus aureuswas achieved on most substrates within minutes. Structural cell damage was further analytically confirmed by TEM. The formulation was well retained on woven cloth surfaces even after repeated washing, thereby revealing its promising potential for use in biosafe clothing. In the face of the current pandemic, the nanomaterials developed are also of commercial utility as an eco-friendly, mass producible alternative to bleach and alcohol based public space sanitizers used today.


Assuntos
Cobre/química , Desinfetantes/farmacologia , Desinfecção/métodos , Nanopartículas Metálicas/química , Polifenóis/química , Bactérias/classificação , Bactérias/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Desinfetantes/síntese química , Desinfetantes/química , Testes de Sensibilidade Microbiana , Inativação de Vírus/efeitos dos fármacos , Vírus/classificação , Vírus/efeitos dos fármacos
11.
Environ Sci Process Impacts ; 23(9): 1394-1404, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34382630

RESUMO

Bacterial growth and degradation experiments were conducted on carbazole (CBZ), fluorene (FLU) and dibenzothiophene (DBT) individually and in various mixture combinations using an efficient polynuclear aromatic hydrocarbon (PAH) degrading bacterial strain, Pseudomonas aeruginosa RS1. In single component systems, bacterial growth on CBZ (specific growth rate, µ = 0.99 day-1) was much higher compared to that on FLU (µ = 0.38 day-1) and DBT (µ = 0.33 day-1) and bacterial growth was inhibited in the presence of FLU and DBT in binary (µ = 0.64 day-1) and ternary (µ = 0.75 day-1) mixtures. Multisubstrate additive modelling indicated growth inhibition in all the systems. The degradation of the compounds was significantly inhibited in binary mixtures. While the degradation of the compounds in binary mixtures varied from 35 ± 4% to 73 ± 3%, their degradation varied from 61 ± 5% to 91 ± 4%, when applied as sole substrates and from 77 ± 3% to 96 ± 3%, when applied in a ternary mixture. Degradation experiments were also conducted in ternary mixtures using a 23 full factorial design and the results were examined using analysis of variance (ANOVA) and Tukey's honest significant difference (HSD) tests. At a low concentration of the heterocyclics, CBZ and DBT (5 mg L-1 each), the degradation of the PAH, FLU, was significantly enhanced (from 81 ± 1% to 93 ± 0.3%) when its concentration was increased from 5 to 30 mg L-1. The full factorial design can provide valuable insights into substrate interaction effects in mixtures.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Bactérias , Biodegradação Ambiental , Pseudomonas aeruginosa
12.
Water Res ; 203: 117508, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375933

RESUMO

Enteric viruses are commonly present in water bodies in regions with poor sanitation. Although the occurrence of these viruses poses a health risk they are difficult to quantify due to their low concentration and they may remain undetected in the absence of adequate preconcentration. The present study reports the synthesis and utilization of DEAE silica gel (DSiG) as an adsorbent for virus concentration. Two coliphages, MS2 and SUSP2, and an enteric virus, rotavirus A (RVA) were chosen for examining the preconcentration efficiency of DSiG columns. Studies conducted at a low flow rate of 5 mL/min yielded good removal of viruses through adsorption. Studies at a higher flow rate of 50 mL/min followed by elution with optimized eluents yielded a high recovery of MS2 and RVA even when they were present at low concentration (0.01 copy/mL). The eluent Na(1.5 M)-Tw(2%)-G3X (glycine 3X broth, 1.5 M NaCl, 2% Tween, pH 10.2) showed maximum elution of RVA and MS2. Optimal SUSP2 recovery was observed on employing an eluent composed of 1.5 M NaCl, 3% Tween, 0.05 M KH2PO4 at pH 9.2. Subsequently, both the eluents were successively applied for elution of the adsorbed viruses. This method was applied for virus preconcentration from lake water in the monsoon and winter seasons. The DSiG column could achieve adequate preconcentration for all the three viruses, i.e., SUSP2, MS2, and RVA, even when they were present at very low concentration and the recovery achieved was comparable to that achieved with ultracentrifugation while the processing time required for handling large volumes of water was considerably lower.


Assuntos
Rotavirus , Colífagos , Etanolaminas , Concentração de Íons de Hidrogênio , Sílica Gel , Água
13.
Nanotechnology ; 32(40)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34192683

RESUMO

Graphene oxide-TiO2nanocomposite (GOT) was used for degradation and mineralization of dichlorvos, an organophosphorus pesticide, from aqueous solution under visible irradiation. The nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, UV-DRS, Fourier-transform infrared spectroscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy. Anatase phase TiO2nanoparticles (10-20 nm in diameter) were present in the nanocomposite. The nanoparticles were uniformly distributed on reduced GO sheets. A three-factor face-centered central composite design with response surface methodology was used for modeling and optimization of various variables that may potentially affect photodegradation, i.e. pH, catalyst loading, and initial dichlorvos concentration. A quadratic model was built to predict degradation, mineralization efficiency, and reaction rate constant. The experimental and predicted values depicted a good correlation and the utility of the models was confirmed by the highF-values observed for the degradation and mineralization models. High coefficient of determination (R2) was obtained for the degradation (R2 = 0.95) and mineralization (R2 = 0.93) models. Pareto analysis was carried out to determine the effect of each variable on photocatalytic degradation and mineralization. The predicted results suggested that the optimum conditions for obtaining maximum degradation (69%) and mineralization (64%) were: initial dichlorvos concentration of 0.5 mg l-1with a catalyst dose of 110 mg l-1at pH 6.5. The main effect plots also suggested a significant influence of the variables used in the photocatalysis of dichlorvos by GOT.

14.
J Hazard Mater ; 413: 125453, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930968

RESUMO

In the present study, wastewater samples acquired from five wastewater treatment plants (WWTPs), located in western India were characterized using fluorescence spectroscopy, and resin-based fractionation was conducted to fractionate DOM into hydrophobic and hydrophilic base, acid, and neutral fractions. Among several fractions, the hydrophilic acid (HIA) and hydrophilic neutral (HIN) fractions were present in higher abundance (more than 50% of DOC) compared to the hydrophilic base (HIB) fraction in both influent and effluent wastewater stream obtained from WWTPs. Tryptophan-like and tyrosine-like substances were also abundant in the influent and effluent stream of WWTPs. Further, LC-MS/MS analysis could identify 235 and 288 DOM proteins in the influent and effluent stream of WWTP-1, respectively. These proteins revealed varying percentage of tryptophan and tyrosine residues. The tryptophan residues primarily contributed to protein-like fluorescence in wastewater. The proteins were further classified based on their role in biological processes, location in the cell, and molecular function. Among several proteins, Alzheimer's and Huntington disease biomarkers were identified at WWTP-1. Their presence in the surface water can serve as an early warning system for wastewater-based epidemiology.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Cromatografia Líquida , Substâncias Húmicas/análise , Índia , Estações do Ano , Espectrometria de Fluorescência , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
15.
J Environ Manage ; 288: 112340, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823437

RESUMO

Photocatalytic removal of estrogenic compounds (ECs), 17ß-estradiol (E2), and 17α-ethinylestradiol (EE2) were assessed using a TiO2-ZnO nanocomposite (NC) over a range of initial EC concentration (Co; 10 mg/L - 0.05 mg/L). Photocatalytic removal was evaluated under UV and visible irradiation using 10 mg/L NC over 240 min duration. After 240 min, analysis using GCxGC TOF MS revealed 100% transformation at Co ≤ 1 mg/L and ≥25% transformation at Co ≤ 10 mg/L under visible irradiation. Degradation was accompanied by breakdown of the fused ring structure of E2, generating smaller molecular weight by-products which were subsequently mineralized as revealed through TOC removal. With UV photocatalysis, ~30% and ~20% mineralization was attained for E2 and EE2, respectively, for Co of 10 mg/L. Under visible irradiation, ~25% and ~10% mineralization was achieved for E2 and EE2, respectively. Estrogenicity variation was estimated using the E-screen assay conducted with estrogen receptor-positive MCF-7 breast cancer cells. Complete removal of estrogenicity of ECs was confirmed after 240 min of photocatalysis under UV and visible irradiation. FTIR spectroscopy-based analysis of the NC after E2 photocatalysis revealed the presence of sorbed organics. Desorption, followed by GC × GC TOF-MS analysis revealed these organics as by-products of photocatalysis. Desorption of sorbed organics followed by recalcination at 600 °C for 1 h regenerated the active sites on the NC, enabling its efficient reuse for 3 cycles under visible irradiation without loss in activity.


Assuntos
Poluentes Químicos da Água , Óxido de Zinco , Estradiol , Estrogênios , Etinilestradiol/análise , Titânio , Água , Poluentes Químicos da Água/análise
16.
3 Biotech ; 11(4): 195, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33927986

RESUMO

The current study illustrates the growth kinetics of an efficient PAH and heterocyclic PAH degrading bacterial strain, Pseudomonas aeruginosa RS1 on fluorene (FLU) and dibenzothiophene (DBT) over the concentration 25-500 mg L-1 and their concomitant degradation kinetics. The specific growth rate (µ) was found to lie within the range of 0.32-0.57 day-1 for FLU and 0.24-0.45 day-1 for DBT. The specific substrate utilization rate (q) of FLU and DBT over the log growth phase was between 0.01 and 0.14 mg FLU mg VSS-1 day-1 for FLU and between 0.01 and 0.18 mg DBT mg VSS-1 day-1 for DBT, respectively. The µ and q values varied within a narrow range for both FLU and DBT and they did not follow any specific trend. Dissolution together with direct interfacial uptake was the possible uptake mechanism for both FLU and DBT. The q values over the log growth phase depicts the specific substrate transformation rates. Kirby-Bauer disc diffusion studies performed using an E. coli strain indicated accumulation of some toxic intermediates of FLU and DBT during their degradation. Decrease in TOC and toxicity towards the end of the degradation experiments indicates further utilization of the intermediates. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02742-7.

17.
Nanotechnology ; 32(20): 205102, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33561842

RESUMO

This study explored the application of colloidal and immobilized silver nanoparticles (AgNPs) for inactivation of bacteriophages. Coliphages that are commonly used as indicators for enteric viruses, were used in this study. Colloidal AgNPs were synthesized via a chemical reduction approach using sodium borohydride as reducing agent and trisodium citrate as stabilizing agent. AgNP-immobilized glass substrate was prepared by immobilizing AgNPs on amine-functionalized glass substrate by post-immobilization method. The AgNP-immobilized glass substrate was also tested so as to minimize the release of AgNPs in the treated water. The characterization of AgNPs and the AgNP-immobilized glass surface was done using field emission gun-transmission electron microscopy and scanning electron microscopy. Studies conducted with varying concentrations of colloidal AgNPs displayed good antiviral activity for MS2 and T4 bacteriophage. Colloidal AgNPs at a dose of 60 µg ml-1 could completely inactivate MS2 and T4 bacteriophage within 30 and 50 min with an initial concentration of 103 PFU ml-1. Contaminated water (100 ml) in an unstirred batch reactor with an initial bacteriophage concentration of 103 PFU ml-1 could be inactivated by the AgNP-immobilized glass substrate (1 cm × 1 cm, containing 3.7 µg cm-2 silver) suspended centrally in the batch reactor. Complete 3-Log bacteriophage inactivation was achieved within 70 and 80 min for MS2 and T4 bacteriophage, respectively, while the aqueous silver concentration was less than 25 µg l-1. This is significantly lower than the recommended standard for silver in drinking water (i.e. 100 µg l-1, US EPA). Thus, AgNP-immobilized glass may have good potential for generating virus-free drinking water.


Assuntos
Antivirais , Nanopartículas Metálicas/química , Prata , Antivirais/química , Antivirais/farmacologia , Bacteriófagos/efeitos dos fármacos , Reatores Biológicos/microbiologia , Reatores Biológicos/virologia , Escherichia coli/virologia , Prata/química , Prata/farmacologia , Propriedades de Superfície
18.
Anal Chem ; 93(4): 2299-2308, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33411532

RESUMO

ß-Lactam antibiotics such as penicillins and cephalosporins are extensively used for human infection therapy. Consistent unintended exposure to these antibiotics via food and water is known to promote antibiotic-resistant bacterial pathogenesis with high morbidity and mortality in humans. An optical enzymatic biosensor for rapid and point-of-use detection of these antibiotics in food and water has been developed and tested. Enzymatic hydrolysis of ß-lactams, on the electroactive polyaniline nanofibers, altered the polymeric backbone of the nanofibers, from emeraldine base form to emeraldine salt, which was measured as an increase in evanescent wave absorbance at 435 nm. The sensors were calibrated by spiking antibiotic-free milk with ceftazidime (as a model ß-lactam analyte) in a linear range of 0.36-3600 nM (R2 = 0.98). The calibration was further validated for packaged milk, local cow milk, and buffalo milk. A similar calibration was devised for chicken meat samples in a linear range of 9-1800 nM (R2 = 0.982) and tap water in a linear range of 0.18-180 nM (R2 = 0.99). Interestingly, it was possible to use the same calibration for the determination of other ß-lactam antibiotics (ampicillin, amoxicillin, and cefotaxime), which reflects the usefulness of the sensor for wide-scale deployment. The sensor performance was validated with a wastewater sample, from a wastewater treatment plant (WWTP), qualitatively analyzed by high-resolution liquid chromatography coupled with mass spectroscopy for detection of ß-lactams. The sensor scheme developed and tested is of grassroot relevance as a quick solution for measurement of ß-lactam residues in food and environment.


Assuntos
Compostos de Anilina/química , Antibacterianos/química , Resíduos de Drogas/química , Contaminação de Alimentos , beta-Lactamas/química , Animais , Galinhas , Monitoramento Ambiental/métodos , Poluentes Ambientais/química , Hidrólise , Carne/análise , Leite/química , Estrutura Molecular , Nanoestruturas , Fibras Ópticas , Águas Residuárias/química
19.
Sci Total Environ ; 765: 142746, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33092831

RESUMO

The contagious SARS-CoV-2 virus, responsible for COVID-19 disease, has infected over 27 million people across the globe within a few months. While literature on SARS-CoV-2 indicates that its transmission may occur predominantly via aerosolization of virus-laden droplets, the possibility of alternate routes of transmission and/or reinfection via the environment requires considerable scientific attention. This review aims to collate information on possible transmission routes of this virus, to ascertain its fate in the environment. Concomitant with the presence of SARS-CoV-2 viral RNA in faeces and saliva of infected patients, studies also indicated its occurrence in raw wastewater, primary sludge and river water. Therefore sewerage system could be a possible route of virus outbreak, a possible tool to assess viral community spread and future surveillance technique. Hence, this review looked into detection, occurrence and fate of SARS-CoV-2 during primary, secondary, and tertiary wastewater and water treatment processes based on published literature on SARS-CoV and other enveloped viruses. The review also highlights the need for focused research on occurrence and fate of SARS-CoV-2 in various environmental matrices. Utilization of this information in environmental transmission models developed for other enveloped and enteric viruses can facilitate risk assessment studies. Preliminary research efforts with SARS-CoV-2 and established scientific reports on other coronaviruses indicate that the threat of virus transmission from the aquatic environment may be currently non-existent. However, the presence of viral RNA in wastewater provides an early warning that highlights the need for effective sewage treatment to prevent a future outbreak of SARS-CoV-2.


Assuntos
COVID-19 , Purificação da Água , Atenção , Humanos , Pandemias , SARS-CoV-2 , Águas Residuárias
20.
Sci Total Environ ; 738: 140277, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32806351

RESUMO

Although bacterial degradation of polynuclear aromatic hydrocarbons (PAH) have been studied using various pure cultures, only a few studies have explored the degradation kinetics and uptake mechanism of nitrogen heterocyclic PAHs (PANH) with three or more rings. This work explored growth kinetics of a PAH degrading bacterial strain, Pseudomonas aeruginosa RS1 on carbazole (CBZ) and concomitant degradation kinetics of CBZ over the concentration range 25 to 500 mg/L. For CBZ acclimatized strain, the specific growth rate (µ) and specific CBZ uptake rate (q) varied from 0.96 ± 0.05 to 2 ± 0.15 day-1 and from 0.002 ± 0.001 to 0.02 ± 0.01 mg CBZ mg VSS-1 day-1, respectively. The Moser and Monod model provided best fits to the µ vs CBZ concentration and q vs CBZ concentration profiles, respectively. Biosurfactant activity did not play a role in CBZ uptake. However, elevation in cell surface hydrophobicity as revealed through the water contact angle values on bacterial cell mat indicated the possible role of direct interfacial uptake in facilitating CBZ uptake over and above uptake after dissolution. Elevated catechol 1,2-dioxygenase enzyme activity was observed during CBZ degradation. Interestingly, the specific activity of this enzyme was higher in the culture supernatant than in the cell extract. However, during CBZ degradation, accumulation of some toxic metabolites in the aqueous phase was revealed through increase in TOC of the aqueous phase and Kirby-Bauer disc diffusion study performed using a E. coli strain. Both aqueous phase TOC and toxicity decreased beyond the log growth phase indicating further utilization of the degradation intermediates.


Assuntos
Pseudomonas aeruginosa , Esgotos , Biodegradação Ambiental , Carbazóis , Escherichia coli , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA