Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
PLoS One ; 19(3): e0290936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451970

RESUMO

Autism spectrum disorder (ASD) is a developmental disorder with a prevalence of around 1% children worldwide and characterized by patient behaviour (communication, social interaction, and personal development). Data on the efficacy of diagnostic tests using copy number variations (CNVs) in candidate genes in ASD is currently around 10% but it is overrepresented by patients of Caucasian background. We report here that the diagnostic success of de novo candidate CNVs in Vietnamese ASD patients is around 6%. We recruited one hundred trios (both parents and a child) where the child was clinically diagnosed with ASD while the parents were not affected. We performed genetic screening to exclude RETT syndrome and Fragile X syndrome and performed genome-wide DNA microarray (aCGH) on all probands and their parents to analyse for de novo CNVs. We detected 1708 non-redundant CNVs in 100 patients and 118 (7%) of them were de novo. Using the filter for known CNVs from the Simons Foundation Autism Research Initiative (SFARI) database, we identified six CNVs (one gain and five loss CNVs) in six patients (3 males and 3 females). Notably, 3 of our patients had a deletion involving the SHANK3 gene-which is the highest compared to previous reports. This is the first report of candidate CNVs in ASD patients from Vietnam and provides the framework for building a CNV based test as the first tier screening for clinical management.


Assuntos
Transtorno do Espectro Autista , Masculino , Criança , Feminino , Humanos , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA/genética , Vietnã/epidemiologia , Análise de Sequência com Séries de Oligonucleotídeos , Genômica , DNA
2.
Genes (Basel) ; 14(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36833422

RESUMO

Glaucoma is the largest cause of irreversible blindness with a multifactorial genetic etiology. This study explores novel genes and gene networks in familial forms of primary open angle glaucoma (POAG) and primary angle closure glaucoma (PACG) to identify rare mutations with high penetrance. Thirty-one samples from nine MYOC-negative families (five POAG and four PACG) underwent whole-exome sequencing and analysis. A set of prioritized genes and variations were screened in an independent validation cohort of 1536 samples and the whole-exome data from 20 sporadic patients. The expression profiles of the candidate genes were analyzed in 17 publicly available expression datasets from ocular tissues and single cells. Rare, deleterious SNVs in AQP5, SRFBP1, CDH6 and FOXM1 from POAG families and in ACACB, RGL3 and LAMA2 from PACG families were found exclusively in glaucoma cases. AQP5, SRFBP1 and CDH6 also revealed significant altered expression in glaucoma in expression datasets. Single-cell expression analysis revealed enrichment of identified candidate genes in retinal ganglion cells and corneal epithelial cells in POAG; whereas for PACG families, retinal ganglion cells and Schwalbe's Line showed enriched expression. Through an unbiased exome-wide search followed by validation, we identified novel candidate genes for familial cases of POAG and PACG. The SRFBP1 gene found in a POAG family is located within the GLC1M locus on Chr5q. Pathway analysis of candidate genes revealed enrichment of extracellular matrix organization in both POAG and PACG.


Assuntos
Glaucoma de Ângulo Fechado , Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Glaucoma de Ângulo Aberto/genética , Sequenciamento do Exoma , Mutação
4.
J Clin Med ; 10(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575183

RESUMO

INTRODUCTION: Breast cancer is the most frequently diagnosed cancer globally and is one of the most important contributors to cancer-related deaths. Earlier diagnosis is known to reduce mortality, and better biomarkers are needed. MiRNA clusters often co-express and target mRNAs in a coordinated fashion, perturbing entire pathways; they thus merit further exploration for diagnostic or prognostic use. MiR-379/656, at chromosome 14q32, is the second largest miRNA cluster in the human genome and implicated in various malignancies including glioblastoma, melanoma, gastrointestinal tumors and ovarian cancer highlighting its potential importance. In this study, we focus on the diagnostic and prognostic potentials of MiR-379/656 in breast cancer and its molecular subtypes. MATERIALS AND METHODS: We analyzed miRNA and mRNA next generation sequencing data from 903 primary tumors and 90 normal controls (source: The Cancer Genome Atlas). The differential expression profile between tumor and normal was analyzed using DeSEQ2. Penalized logistic regression modelling (lasso regression) was used to assess the predictive potential of MiR-379/656 expression for tumor and normal samples. The association between MiR-379/656 expression and overall patient survival was studied using Cox Proportional-Hazard Model. The target mRNAs (validated) of MiR-379/656 were annotated via pathway enrichment analysis to understand the biological significance of the cluster in breast cancer. RESULTS: The differential expression analysis for 1390 miRNAs (miRnome) revealed 310 upregulated (22.3%) and 176 downregulated (12.66%) miRNAs in breast cancer patients compared with controls. For MiR-379/656, 32 miRNAs (32/42; 76%) were downregulated. The MiR-379/656 cluster was found to be the most differentially expressed cluster in the human genome (p < 10-30). The Basal and Luminal B subtypes showed at least 83% (35/42) of the miRNAs to be downregulated. The binomial model prioritized 15 miRNAs, which distinguished breast cancer patients from controls with 99.15 ± 0.58% sensitivity and 77.78 ± 5.24% specificity. Overall, the Basal and Luminal B showed the most effective predictive power with respect to the 15 prioritized miRNAs at MiR-379/656 cluster. The decreased expression of MiR-379/656 was found to be associated with poorer clinical outcome in Basal and Luminal B subtypes, increasing tumor stage and tumor size/extent, and overall patient survival. Pathway enrichment for the validated targets of MiR-379/656 was significant for cancer-related pathways, especially DNA repair, transcriptional regulation by p53 and cell cycle checkpoints (adjusted p-value < 0.05). CONCLUSIONS: Genome informatics analysis of high throughput data for MiR-379/656 cluster has shown that a subset of 15 miRNAs from MiR-379/656 cluster can be used for the diagnostic and prognostic purpose of breast cancer and its subtypes-especially in Basal and Luminal B.

5.
Noncoding RNA ; 6(2)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498345

RESUMO

RNA editing is a post-transcriptional modification, which can provide tissue-specific functions not encoded in DNA. Adenosine-to-inosine is the predominant editing event and, along with cytosine-to-uracil changes, constitutes canonical editing. The rest is non-canonical editing. In this study, we have analysed non-canonical editing of microRNAs in the human brain. We have performed massively parallel small RNA sequencing of frontal cortex (FC) and corpus callosum (CC) pairs from nine normal individuals (post-mortem). We found 113 and 90 unique non-canonical editing events in FC and CC samples, respectively. More than 70% of events were in the miRNA seed sequence-implicating an altered set of target mRNAs and possibly resulting in a functional consequence. Up to 15% of these events were recurring and found in at least three samples, also supporting the biological relevance of such variations. Two specific sequence variations, C-to-A and G-to-U, accounted for over 80% of non-canonical miRNA editing events-and revealed preferred sequence motifs. Our study is one of the first reporting non-canonical editing in miRNAs in the human brain. Our results implicate miRNA non-canonical editing as one of the contributing factors towards transcriptomic diversity in the human brain.

6.
Sci Rep ; 10(1): 5034, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193494

RESUMO

Autism spectrum disorder (ASD) is a complex disorder with an unclear aetiology and an estimated global prevalence of 1%. However, studies of ASD in the Vietnamese population are limited. Here, we first conducted whole exome sequencing (WES) of 100 children with ASD and their unaffected parents. Our stringent analysis pipeline was able to detect 18 unique variants (8 de novo and 10 ×-linked, all validated), including 12 newly discovered variants. Interestingly, a notable number of X-linked variants were detected (56%), and all of them were found in affected males but not in affected females. We uncovered 17 genes from our ASD cohort in which CHD8, DYRK1A, GRIN2B, SCN2A, OFD1 and MDB5 have been previously identified as ASD risk genes, suggesting the universal aetiology of ASD for these genes. In addition, we identified six genes that have not been previously reported in any autism database: CHM, ENPP1, IGF1, LAS1L, SYP and TBX22. Gene ontology and phenotype-genotype analysis suggested that variants in IGF1, SYP and LAS1L could plausibly confer risk for ASD. Taken together, this study adds to the genetic heterogeneity of ASD and is the first report elucidating the genetic landscape of ASD in Vietnamese children.


Assuntos
Transtorno do Espectro Autista/genética , Adolescente , Transtorno do Espectro Autista/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Variação Genética , Heterozigoto , Humanos , Fator de Crescimento Insulin-Like I/genética , Masculino , Proteínas Nucleares/genética , Sinaptofisina/genética , Vietnã/epidemiologia , Sequenciamento do Exoma
7.
Sci Rep ; 10(1): 1368, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992760

RESUMO

Fusion transcripts can contribute to diversity of molecular networks in the human cortex. In this study, we explored the occurrence of fusion transcripts in normal human cortex along with single neurons and astrocytes. We identified 1305 non-redundant fusion events from 388 transcriptomes representing 59 human cortices and 329 single cells. Our results indicate while the majority of fusion transcripts in human cortex are intra-chromosomal (85%), events found in single neurons and astrocytes were primarily inter-chromosomal (80%). The number of fusions in single neurons was significantly higher than that in single astrocytes (p < 0.05), indicating fusion as a possible contributor towards transcriptome diversity in neuronal cells. The identified fusions were largely private and 4 specific recurring events were found both in cortex and in single neurons but not in astrocytes. We found a significant increase in the number of fusion transcripts in human brain with increasing age both in single cells and whole cortex (p < 0.0005 and < 0.005, respectively). This is likely one of the many possible contributors for the inherent plasticity of the adult brain. The fusion transcripts in fetal brain were enriched for genes for long-term depression; while those in adult brain involved genes enriched for long-term potentiation pathways. Our findings demonstrate fusion transcripts are naturally occurring phenomenon spanning across the health-disease continuum, and likely contribute to the diverse molecular network of human brain.


Assuntos
Envelhecimento/fisiologia , Astrócitos/metabolismo , Lobo Frontal/metabolismo , Substância Cinzenta/metabolismo , Neurônios/metabolismo , RNA Mensageiro/biossíntese , Transcriptoma/fisiologia , Adulto , Astrócitos/citologia , Feminino , Lobo Frontal/citologia , Substância Cinzenta/citologia , Humanos , Recém-Nascido , Potenciação de Longa Duração/fisiologia , Masculino , Neurônios/citologia
8.
J Neurooncol ; 139(1): 23-31, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29931616

RESUMO

INTRODUCTION: Although role of individual microRNAs (miRNAs) in the pathogenesis of gliomas has been well studied, their role as a clustered remains unexplored in gliomas. METHODS: In this study, we performed the expression analysis of miR-379/miR-656 miRNA-cluster (C14MC) in oligodendrogliomas (ODGs) and also investigated the mechanism underlying modulation of this cluster. RESULTS: We identified significant downregulation of majority of the miRNAs from this cluster in ODGs. Further data from The Cancer Genome Atlas (TCGA) also confirmed the global downregulation of C14MC. Furthermore, we observed that its regulation is maintained by transcription factor MEF2. In addition, epigenetic machinery involving DNA and histone-methylation are also involved in its regulation, which is acting independently or in synergy. The post- transcriptionally regulatory network of this cluster showed enrichment of key cancer-related biological processes such as cell adhesion and migration. Also, there was enrichment of several cancer related pathways viz PIK3 signaling pathway and glioma pathways. Survival analysis demonstrated association of C14MC (miR-487b and miR-409-3p) with poor progression free survival in ODGs. CONCLUSION: Our work demonstrates tumor-suppressive role of C14MC and its role in pathogenesis of ODGs and therefore could be relevant for the development of new therapeutic strategies.


Assuntos
Neoplasias Encefálicas/metabolismo , MicroRNAs/metabolismo , Oligodendroglioma/metabolismo , Adulto , Idoso , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Biologia Computacional , Metilação de DNA , Regulação para Baixo , Epigênese Genética/fisiologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Oligodendroglioma/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/fisiologia
9.
Sci Rep ; 8(1): 7673, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769662

RESUMO

Clustered miRNAs can affect functioning of downstream pathways due to possible coordinated function. We observed 78-88% of the miR-379/miR-656 cluster (C14MC) miRNAs were downregulated in three sub-types of diffuse gliomas, which was also corroborated with analysis from The Cancer Genome Atlas (TCGA) datasets. The miRNA expression levels decreased with increasing tumor grade, indicating this downregulation as an early event in gliomagenesis. Higher expression of the C14MC miRNAs significantly improved glioblastioma prognosis (Pearson's r = 0.62; p < 3.08e-22). ENCODE meta-data analysis, followed by reporter assays validated existence of two novel internal regulators within C14MC. CRISPR activation of the most efficient internal regulator specifically induced members of the downstream miRNA sub-cluster and apoptosis in glioblastoma cells. Luciferase assays validated novel targets for miR-134 and miR-485-5p, two miRNAs from C14MC with the most number of target genes relevant for glioma. Overexpression of miR-134 and miR-485-5p in human glioblastoma cells suppressed invasion and proliferation, respectively. Furthermore, apoptosis was induced by both miRs, individually and in combination. The results emphasize the tumor suppressive role of C14MC in diffuse gliomas, and identifies two specific miRNAs with potential therapeutic value and towards better disease management and therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , MicroRNAs/genética , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Invasividade Neoplásica , Fenótipo , Células Tumorais Cultivadas
10.
Sci Rep ; 7(1): 2466, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28550310

RESUMO

Editing in microRNAs, particularly in seed can significantly alter the choice of their target genes. We show that out of 13 different human tissues, different regions of brain showed higher adenosine to inosine (A-to-I) editing in mature miRNAs. These events were enriched in seed sequence (73.33%), which was not observed for cytosine to uracil (17.86%) editing. More than half of the edited miRNAs showed increased stability, 72.7% of which had ΔΔG values less than -6.0 Kcal/mole and for all of them the edited adenosines mis-paired with cytosines on the pre-miRNA structure. A seed-editing event in hsa-miR-411 (with A - C mismatch) lead to increased expression of the mature form compared to the unedited version in cell culture experiments. Further, small RNA sequencing of GBM patients identified significant miRNA hypoediting which correlated with downregulation of ADAR2 both in metadata and qRT-PCR based validation. Twenty-two significant (11 novel) A-to-I hypoediting events were identified in GBM samples. This study highlights the importance of specific sequence and structural requirements of pre-miRNA for editing along with a suggestive crucial role for ADAR2. Enrichment of A-to-I editing in seed sequence highlights this as an important layer for genomic regulation in health and disease, especially in human brain.


Assuntos
Adenosina Desaminase/genética , Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , MicroRNAs/genética , Edição de RNA , Proteínas de Ligação a RNA/genética , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Autopsia , Pareamento de Bases , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Biblioteca Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Células HEK293 , Humanos , Inosina/metabolismo , MicroRNAs/classificação , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Termodinâmica , Substância Branca/metabolismo , Substância Branca/patologia
12.
BMC Med Genomics ; 9: 15, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27001270

RESUMO

BACKGROUND: Glaucoma is the largest cause of irreversible blindness affecting more than 60 million people globally. The disease is defined as a gradual loss of peripheral vision due to death of Retinal Ganglion Cells (RGC). The RGC death is largely influenced by the rate of aqueous humor production by ciliary processes and its passage through the trabecular meshwork (TM) in the anterior part of the eye. Primary open angle glaucoma (POAG), the most common subtype, is a genetically complex disease. Multiple genes and many loci have been reported to be involved in POAG but taken together they explain less than 10 % of the patients from a genetic perspective warranting more studies in different world populations. The purpose of this study was to perform genome-wide search for common variants associated with POAG in an east-Indian population. METHODS: The study recruited 746 POAG cases and 697 controls distributed into discovery and validation cohorts. In the discovery phase, genome-wide genotype data was generated on Illumina Infinium 660 W-Quad platform and the significant SNPs were genotyped using Illumina GGGT assay in the second phase. Logistic regression was used to test association in the discovery phase to adjust for population sub-structure and chi-square test was used for association analysis in validation phase. Publicly available expression dataset for trabecular meshwork was used to check for expression of the candidate gene under cyclic mechanical stress. Western blot and immunofluorescence experiments were performed in human TM cells and murine eye, respectively to check for expression of the candidate gene. RESULTS: Meta-analysis of discovery and validation phase data revealed the association of rs7916852 in MPP7 gene (p = 5.7x10(-7)) with POAG. We have shown abundant expression of MPP7 in the HTM cells. Expression analysis shows that upon cyclic mechanical stress MPP7 was significantly down-regulated in HTM (Fold change: 2.6; p = 0.018). MPP7 protein expression was also found to be enriched in the ciliary processes of the murine eye. CONCLUSION: Using a genome-wide approach we have identified MPP7 as a novel candidate gene for POAG with evidence of its expression in relevant ocular tissues and dysregulation under mechanical stress possibly mimicking the disease scenario.


Assuntos
Regulação para Baixo/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Glaucoma de Ângulo Aberto/genética , Proteínas de Membrana/genética , Estresse Mecânico , Malha Trabecular/metabolismo , Animais , Corpo Ciliar/metabolismo , Estudos de Coortes , Imunofluorescência , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Índia , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Malha Trabecular/patologia
13.
F1000Res ; 5: 2520, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28149503

RESUMO

Somatic variation in DNA can cause cells to deviate from the preordained genomic path in both disease and healthy conditions. Here, using exome sequencing of paired tissue samples, we show that the normal human brain harbors somatic single base variations measuring up to 0.48% of the total variations. Interestingly, about 64% of these somatic variations in the brain are expected to lead to non-synonymous changes, and as much as 87% of these represent G:C>T:A transversion events. Further, the transversion events in the brain were mostly found in the frontal cortex, whereas the corpus callosum from the same individuals harbors the reference genotype. We found a significantly higher amount of 8-OHdG (oxidative stress marker) in the frontal cortex compared to the corpus callosum of the same subjects (p<0.01), correlating with the higher G:C>T:A transversions in the cortex. We found significant enrichment for axon guidance and related pathways for genes harbouring somatic variations. This could represent either a directed selection of genetic variations in these pathways or increased susceptibility of some loci towards oxidative stress. This study highlights that oxidative stress possibly influence single nucleotide somatic variations in normal human brain.

14.
Nucleic Acids Res ; 43(16): 8057-65, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26209130

RESUMO

RNA editing of miRNAs, especially in the seed region, adds another layer to miRNA mediated gene regulation which can modify its targets, altering cellular signaling involved in important processes such as differentiation. In this study, we have explored the role of miRNA editing in CD4(+) T cell differentiation. CD4(+) T cells are an integral component of the adaptive immune system. Naïve CD4(+) T cells, on encountering an antigen, get differentiated either into inflammatory subtypes like Th1, Th2 or Th17, or into immunosuppressive subtype Treg, depending on the cytokine milieu. We found C-to-U editing at fifth position of mature miR-100, specifically in Treg. The C-to-U editing of miR-100 is functionally associated with at least one biologically relevant target change, from MTOR to SMAD2. Treg cell polarization by TGFß1 was reduced by both edited and unedited miR-100 mimics, but percentage of Treg in PBMCs was only reduced by edited miR-100 mimics, suggesting a model in which de-repression of MTOR due to loss of unedited mir-100, promotes tolerogenic signaling, while gain of edited miR-100 represses SMAD2, thereby limiting the Treg. Such delicately counterbalanced systems are a hallmark of immune plasticity and we propose that miR-100 editing is a novel mechanism toward this end.


Assuntos
MicroRNAs/metabolismo , Edição de RNA , Linfócitos T Reguladores/imunologia , Regiões 3' não Traduzidas , Linfócitos T CD4-Positivos/classificação , Diferenciação Celular , Células Cultivadas , Humanos , Proteína Smad2/genética , Subpopulações de Linfócitos T , Linfócitos T Reguladores/citologia , Serina-Treonina Quinases TOR/genética
15.
Mol Cytogenet ; 7(Suppl 1 Proceedings of the International Conference on Human): I33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24940365
16.
Sci Rep ; 4: 5115, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24875940

RESUMO

INK4 locus at chromosome 9p21 has been reported to be associated with primary open angle glaucoma (POAG) and its subtypes along with the associated optic disc parameters across the populations of European, Japanese and African ancestries. The locus encodes three tumor suppressor genes namely CDKN2A, ARF, CDKN2B and a long non-coding RNA CDKN2B-AS1 (also known as ANRIL). Here, we report association study of 34 SNPs from INK4 locus with POAG in a population of Indo-European ancestry from the eastern part of India (350 patients and 354 controls). With 81% power to detect genetic association we observed only nominal association of rs1011970 (uncorrected p = 0.048) with POAG and rs10120688 (uncorrected p = 0.048) in patients without a high intra-ocular pressure (IOP<21 mm of Hg) compared to controls. This study, in contrast to the previous reports, suggests lack of significant genetic association of INK4 locus with POAG in East Indian population which needs to be replicated in larger studies in diverse world populations.


Assuntos
Inibidor de Quinase Dependente de Ciclina p15/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Glaucoma/epidemiologia , Glaucoma/genética , Polimorfismo de Nucleotídeo Único/genética , Feminino , Estudos de Associação Genética , Marcadores Genéticos/genética , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Prevalência , Reprodutibilidade dos Testes , Medição de Risco , Sensibilidade e Especificidade
17.
Invest Ophthalmol Vis Sci ; 55(5): 3258-64, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24764060

RESUMO

PURPOSE: Large copy number variations (CNV) can contribute to increased burden for neurodegenerative diseases. In this study, we analyzed the genome-wide burden of large CNVs > 100 kb in primary open angle glaucoma (POAG), a neurodegenerative disease of the eye that is the largest cause of irreversible blindness. METHODS: Genome-wide analysis of CNVs > 100 kb were analyzed in a total of 1720 individuals, including an Indian cohort (347 POAG cases and 345 controls) and a Caucasian cohort (624 cases and 404 controls). All the CNV data were obtained from experiments performed on Illumina 660W-Quad (infinium) arrays. RESULTS: We observed that for both the populations CNVs > 1 Mb was significantly enriched for gene-rich regions unique to the POAG cases (P < 10(-11)). In the Indian cohort CNVs > 1 Mb (39 calls) in patients influenced 125 genes while in controls 31 such CNVs influenced only 5 genes with no overlap. In both cohorts we observed 1.9-fold gene enrichment in patients for deletions compared to duplications, while such a bias was not observed in controls (0.3-fold). Overall duplications > 1 Mb were more than deletions (Del/Dup = 0.82) confirming that the enrichment of gene-rich deletions in patients was associated with the disease. Of the 39 CNVs > 1 Mb from Indian patients, 28 (72%) also were implicated in other neurodegenerative disorders, like autism, schizophrenia, sensorineural hearing loss, and so forth. We found one large duplication encompassing CNTN4 gene in Indian and Caucasian POAG patients that was absent in the controls. CONCLUSIONS: To our knowledge, our study is the first report on large CNV bias for gene-rich regions in glaucomatous neurodegeneration, implicating its impact across populations of contrasting ethnicities. We identified CNTN4 as a novel candidate gene for POAG.


Assuntos
Contactinas/genética , Variações do Número de Cópias de DNA , DNA/genética , Etnicidade/genética , Deleção de Genes , Glaucoma de Ângulo Aberto/genética , População Branca/genética , Adulto , Idoso , Feminino , Duplicação Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Glaucoma de Ângulo Aberto/etnologia , Glaucoma de Ângulo Aberto/metabolismo , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade
18.
PLoS One ; 8(8): e70760, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940637

RESUMO

Primary open angle glaucoma (POAG) is a multi-factorial optic disc neuropathy characterized by accelerating damage of the retinal ganglion cells and atrophy of the optic nerve head. The vulnerability of the optic nerve damage leading to POAG has been postulated to result from oxidative stress and mitochondrial dysfunction. In this study, we investigated the possible involvement of the mitochondrial genomic variants in 101 patients and 71 controls by direct sequencing of the entire mitochondrial genome. The number of variable positions in the mtDNA with respect to the revised Cambridge Reference Sequence (rCRS), have been designated "Segregating Sites". The segregating sites present only in the patients or controls have been designated "Unique Segregating Sites (USS)". The population mutation rate (θ = 4Neµ) as estimated by Watterson's θ (θw), considering only the USS, was significantly higher among the patients (p = 9.8 × 10(-15)) compared to controls. The difference in θw and the number of USS were more pronounced when restricted to the coding region (p<1.31 × 10(-21) and p = 0.006607, respectively). Further analysis of the region revealed non-synonymous variations were significantly higher in Complex I among the patients (p = 0.0053). Similar trends were retained when USS was considered only within complex I (frequency 0.49 vs 0.31 with p<0.0001 and mutation rate p-value <1.49×10(-43)) and ND5 within its gene cluster (frequency 0.47 vs 0.23 with p<0.0001 and mutation rate p-value <4.42×10(-47)). ND5 is involved in the proton pumping mechanism. Incidentally, glaucomatous trabecular meshwork cells have been reported to be more sensitive to inhibition of complex I activity. Thus mutations in ND5, expected to inhibit complex I activity, could lead to generation of oxidative stress and favor glaucomatous condition.


Assuntos
Complexo I de Transporte de Elétrons/genética , Genoma Mitocondrial , Glaucoma de Ângulo Aberto/genética , Proteínas Mitocondriais/genética , Estudos de Casos e Controles , Análise Mutacional de DNA , DNA Mitocondrial/genética , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Haplótipos , Humanos , Região de Controle de Locus Gênico , Família Multigênica , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , RNA Ribossômico/genética , RNA de Transferência de Leucina/genética
20.
Biol Direct ; 8: 10, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23618224

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are non-uniformly distributed in genomes and ~30% of the miRNAs in the human genome are clustered. In this study we have focused on the imprinted miRNA cluster miR-379/miR-656 on 14q32.31 (hereafter C14) to test their coordinated function. We have analyzed expression profile of >1000 human miRNAs in >1400 samples representing seven different human tissue types obtained from cancer patients along with matched and unmatched controls. RESULTS: We found 68% of the miRNAs in this cluster to be significantly downregulated in glioblastoma multiforme (GBM), 61% downregulated in kidney renal clear cell carcinoma (KIRC), 46% in breast invasive carcinoma (BRCA) and 14% in ovarian serous cystadenocarcinoma (OV). On a genome-wide scale C14 miRNAs accounted for 12-30% of the total downregulated miRNAs in different cancers. Pathway enrichment for the predicted targets of C14 miRNA was significant for cancer pathways, especially Glioma (p< 3.77x10⁻6, FDR<0.005). The observed downregulation was confirmed in GBM patients by real-time PCR, where 79% of C14 miRNAs (34/43) showed downregulation. In GBM samples, hypermethylation at C14 locus (p<0.003) and downregulation of MEF2, a crucial transcription factor for the cluster was observed which likely contribute to the observed downregulation of the entire miRNA cluster. CONCLUSION: We provide compelling evidence that the entire C14 miRNA cluster is a tumor suppressor locus involved in multiple cancers, especially in GBM, and points toward a general mechanism of coordinated function for clustered miRNAs.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , MicroRNAs/genética , Neoplasias/genética , Neoplasias da Mama/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , Humanos , Técnicas In Vitro , Masculino , Neoplasias Ovarianas/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA