RESUMO
BACKGROUND AND AIMS: Using ecological momentary assessment (EMA), we undertook a natural experiment wherein kratom-product variability was a tool to assess kratom dose-response relationships based on product form and alkaloid level. METHODS: Between July-November 2022, 357 US kratom consumers (56.6 % male, 90.2 % non-Hispanic white) completed 15 days of EMA; 348 participants submitted samples of the products used most often during EMA. These were assayed for ten alkaloids using ultra-performance liquid chromatography-tandem mass spectrometry. Self-reported kratom effects were modeled as a function of kratom amount and alkaloid content. RESULTS: Participants used over 220 brands. The most-reported product forms were loose powder (55.8 %) and encapsulated powder (26.8 %); extracts were used less (419 uses across 9.48 % of participants). Of the 12,244 use-event entries, 7726 had follow-up data (15-180minutes after use) on felt effects. Effects were stronger in participants with a higher average amount per use. Within-person dose-response relationships were obscured by highly-consistent within-person dosages. Effects of loose powder decreased over three hours; effects of extracts started higher but decreased more rapidly. Dose-response relationships for specific alkaloids could not be reliably established because total alkaloid content and relative levels of specific alkaloids showed limited variability between products. Higher levels of corynoxine alkaloids were associated with slightly stronger effects, possibly an artifact of modeling data with low alkaloid variability. CONCLUSIONS: Alkaloid content was surprisingly consistent across kratom products, and participants were consistent in the amount they used across events. Firm conclusions about alkaloid-effect relationships for kratom will require experimenter-controlled manipulations of agent and dose.
Assuntos
Alcaloides , Mitragyna , Humanos , Masculino , Feminino , Adulto , Mitragyna/química , Alcaloides/análise , Avaliação Momentânea Ecológica , Pessoa de Meia-Idade , Relação Dose-Resposta a Droga , Adulto Jovem , Extratos Vegetais/química , AdolescenteRESUMO
This study reports the steady-state pharmacokinetic parameters for mitragynine and characterizes its elimination in male and female rats. Four male and female rats were dosed q12h with 40 mg/kg, and orally administered mitragynine for 5 and 6 days, respectively. Using a validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method, the plasma concentrations of mitragynine, its metabolites (7-hydroxymitragynine, 9-hydroxycorynantheidine, and mitragynine acid), and a non-CYP oxidation product (3-dehydromitragynine) were determined at various time points. Sex differences in pharmacokinetics were observed, with females demonstrating significantly higher systemic exposure of mitragynine than males. The mitragynine area under the curve normalized by the dose interval (AUC/τ) was 6741.6 ± 869.5 h*ng/mL in female rats and 1808.9 ± 191.3 h*ng/mL in males (p < 0.05). Both sexes produced similar metabolite profiles; the major metabolites were mitragynine acid and 9-hydroxycorynantheidine. 7-Hydroxymitragynine was a minor metabolite. However, higher exposure (AUCs) and the maximum plasma concentrations (C max) of active metabolites, 7-hydroxymitragynine and 9-hydroxycorynantheidine, were observed in female rats and exhibited substantial sex differences. Renal clearance of mitragynine (CLr) was low (0.64 ± 0.3 mL/h in males and 0.98 ± 0.4 mL/h in females), and unchanged mitragynine accounted for <1% of the dose excreted in feces (both sexes). The clinical chemistry, complete blood count, and hematological test results reported no abnormal hematological findings after multiple dosing in either sex.
RESUMO
Mitragyna speciosa, more commonly known as kratom, has emerged as an alternative to treat chronic pain and addiction. However, the alkaloid components of kratom, which are the major contributors to kratom's pharmaceutical properties, have not yet been fully investigated. In this study, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was used to map the biodistribution of three alkaloids (corynantheidine, mitragynine, and speciogynine) in rat brain tissues. The alkaloids produced three main ion types during MALDI analysis: [M + H]+, [M - H]+, and [M - 3H]+. Contrary to previous reports suggesting that the [M - H]+ and [M - 3H]+ ion types form during laser ablation, these ion types can also be produced during the MALDI matrix application process. Several strategies are proposed to accurately map the biodistribution of the alkaloids. Due to differences in the relative abundances of the ions in different biological regions of the tissue, differences in ionization efficiencies of the ions, and potential overlap of the [M - H]+ and [M - 3H]+ ion types with endogenous metabolites of the same empirical formula, a matrix that mainly produces the [M + H]+ ion type is optimal for accurate mapping of the alkaloids. Alternatively, the most abundant ion type can be mapped or the intensities of all ion types can be summed together to generate a composite image. The accuracy of each of these approaches is explored and validated.
Assuntos
Alcaloides , Encéfalo , Mitragyna , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Mitragyna/química , Ratos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Alcaloides/farmacocinética , Alcaloides/análise , Alcaloides/química , Masculino , Íons/química , Distribuição Tecidual , Ratos Sprague-DawleyRESUMO
OBJECTIVES: Despite widespread kratom use, there is a lack of knowledge regarding its effects on driving. We evaluated the self-reported driving behaviors of kratom consumers and assessed their simulated-driving performance after self-administering kratom products. METHODS: We present results from: 1) a remote, national study of US adults who regularly use kratom, and 2) an in-person substudy from which we re-recruited participants. In the national study (N = 357), participants completed a detailed survey and a 15-day ecological momentary assessment (EMA) that monitored naturalistic kratom use. For the remote study, outcomes were self-reported general and risky driving behaviors, perceived impairment, and driving confidence following kratom administration. For the in-person substudy, 10 adults consumed their typical kratom products and their driving performance on a high-fidelity driving simulator pre- and post-kratom administration was evaluated. RESULTS: Over 90% of participants surveyed self-reported driving under the influence of kratom. Most reported low rates of risky driving behavior and expressed high confidence in their driving ability after taking kratom. This was consistent with EMA findings: participants reported feeling confident in their driving ability and perceived little impairment within 15-180 min after using kratom. In the in-person substudy, there were no significant changes in simulated driving performance after taking kratom. CONCLUSIONS: Using kratom before driving appears routine, however, self-reported and simulated driving findings suggest kratom effects at self-selected doses among regular kratom consumers do not produce significant changes in subjective and objective measures of driving impairment. Research is needed to objectively characterize kratom's impact on driving in regular and infrequent consumers.
Assuntos
Mitragyna , Adulto , Humanos , Estudos Transversais , Avaliação Momentânea Ecológica , Acidentes de Trânsito , AutorrelatoRESUMO
Kratom and cannabidiol products are used to self-treat a variety of conditions, including anxiety and pain, and to elevate mood. Research into the individual pharmacokinetic properties of commercially available kratom and cannabidiol products has been performed, but there are no studies on coadministration of these products. Surveys of individuals with kratom use history indicate that cannabidiol use is one of the strongest predictors of both lifetime and past month kratom use. The purpose of this study was to determine if there are changes in pharmacokinetic properties when commercially available kratom and cannabidiol products are administered concomitantly. It was found that with concomitant administration of cannabidiol, there was a 2.8-fold increase in the exposure of the most abundant kratom alkaloid, mitragynine, and increases in the exposure of other minor alkaloids. The results of this work suggest that with cannabidiol coadministration, the effects of kratom may be both delayed and increased due to a delay in time to reach maximum plasma concentration and higher systemic exposure of the psychoactive alkaloids found in kratom.
RESUMO
INTRODUCTION: Use of kratom has outpaced systematic study of its effects, with most studies reliant on retrospective self-report. METHODS: We aimed to assess acute effects following kratom use in adults who use regularly, and quantify alkaloids in the products, urine, and plasma. Between July and November 2022, 10 adults came to our clinic and orally self-administered their typical kratom dose; blinding procedures were not used. Physiological measures included blood pressure, respiratory rate, heart rate, pulse oximetry, temperature, and pupil diameter. Subjective outcomes included Subjective Opioid Withdrawal Scale, Addiction Research Center Inventory, and Drug Effects Questionnaire. Psychomotor performance was also assessed. RESULTS: Participants were 6 men and 4 women, mean age 41.2 years. Nine were non-Hispanic White; 1 was biracial. They had used kratom for 6.6 years (SD, 3.8 years) on average (2.0-14.1). Sessions were 190.89 minutes on average (SD, 15.10 minutes). Mean session dose was 5.16 g (median, 4.38 g; range, 1.1-10.9 g) leaf powder. Relative to baseline, physiological changes were minor. However, pupil diameter decreased (right, b = -0.70, P < 0.01; left, b = -0.73, P < 0.01) 40-80 minutes postdose and remained below baseline >160 minutes. Subjective Opioid Withdrawal Scale pre-dosing was mild (5.5 ± 3.3) and decreased postdose (b = [-4.0, -2.9], P < 0.01). Drug Effects Questionnaire "feeling effects" increased to 40/100 (SD, 30.5) within 40 minutes and remained above baseline 80 to 120 minutes (b = 19.0, P = 0.04), peaking at 72.7/100; 6 participants rated euphoria as mild on the Addiction Research Center Inventory Morphine-Benzedrine-scale. Psychomotor performance did not reliably improve or deteriorate postdosing. CONCLUSIONS: Among regular consumers, we found few clinically significant differences pre- and post-kratom dosing. Alkaloidal contents in products were within expected ranges.
Assuntos
Alcaloides , Mitragyna , Síndrome de Abstinência a Substâncias , Masculino , Adulto , Humanos , Feminino , Analgésicos Opioides/uso terapêutico , Estudos Retrospectivos , Entorpecentes/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológicoRESUMO
Kratom, (Mitragyna Speciosa Korth.) is a plant indigenous to Southeast Asia whose leaves are cultivated for a variety of medicinal purposes and mostly consumed as powders or tea in the United States. Kratom use has surged in popularity with the lay public and is currently being investigated for possible therapeutic benefits including as a treatment for opioid withdrawal due to the pharmacologic effects of its indole alkaloids. A wide array of psychoactive compounds are found in kratom, with mitragynine being the most abundant alkaloid. The drug-drug interaction (DDI) potential of mitragynine and related alkaloids have been evaluated for effects on the major cytochrome P450s (CYPs) via in vitro assays and limited clinical investigations. However, no thorough assessment of their potential to inhibit the major hepatic hydrolase, carboxylesterase 1 (CES1), exists. The purpose of this study was to evaluate the in vitro inhibitory potential of kratom extracts and its individual major alkaloids using an established CES1 assay and incubation system. Three separate kratom extracts and the major kratom alkaloids mitragynine, speciogynine, speciociliatine, paynantheine, and corynantheidine displayed a concentration-dependent reversible inhibition of CES1. The experimental Ki values were determined as follows for mitragynine, speciociliatine, paynantheine, and corynantheidine: 20.6, 8.6, 26.1, and 12.5 µM respectively. Speciociliatine, paynantheine, and corynantheidine were all determined to be mixed-type reversible inhibitors of CES1, while mitragynine was a purely competitive inhibitor. Based on available pharmacokinetic data, determined Ki values, and a physiologically based inhibition screen mimicking alkaloid exposures in humans, a DDI mediated via CES1 inhibition appears unlikely across a spectrum of doses (i.e., 2-20g per dose). However, further clinical studies need to be conducted to exclude the possibility of a DDI at higher and extreme doses of kratom and those who are chronic users.
Assuntos
Mitragyna , Humanos , Extratos Vegetais/farmacologia , Hidrolases de Éster CarboxílicoRESUMO
BACKGROUND: For many chemotherapy patients peripheral neuropathy is a debilitating side effect. Mitragyna speciosa (kratom) contains the alkaloid mitragynine (MG), which produces analgesia in multiple preclinical pain models. In humans, anecdotal reports suggest cannabidiol (CBD) may enhance kratom-related analgesia. We examined the interactive activity of MG and CBD in a mouse chemotherapy-induced peripheral neuropathy (CIPN) model. We also examined MG + CBD in acute antinociception and schedule-controlled responding assays, as well as examined underlying receptor mechanisms. METHODS: Male and female C57BL/6J mice received a cycle of intraperitoneal (ip) paclitaxel injections (cumulative dose 32 mg/kg). The von Frey assay was utilized to assess CIPN allodynia. In paclitaxel-naïve mice, schedule-controlled responding for food was conducted under a fixed ratio (FR)-10, and hot plate antinociception was examined. RESULTS: MG dose-relatedly attenuated CIPN allodynia (ED50 102.96 mg/kg, ip), reduced schedule-controlled responding (ED50 46.04 mg/kg, ip), and produced antinociception (ED50 68.83 mg/kg, ip). CBD attenuated allodynia (ED50 85.14 mg/kg, ip) but did not decrease schedule-controlled responding or produce antinociception. Isobolographic analysis revealed 1:1, 3:1 MG + CBD mixture ratios additively attenuated CIPN allodynia. All combinations decreased schedule-controlled responding and produced antinociception. WAY-100635 (serotonin 5-HT1A receptor antagonist) pretreatment (0.01 mg/kg, ip) antagonized CBD anti-allodynia. Naltrexone (pan opioid receptor antagonist) pretreatment (0.032 mg/kg, ip) antagonized MG anti-allodynia and acute antinociception but produced no change in MG-induced decreased schedule-controlled behavior. Yohimbine (α2 receptor antagonist) pretreatment (3.2 mg/kg, ip) antagonized MG anti-allodynia and produced no change in MG-induced acute antinociception or decreased schedule-controlled behavior. CONCLUSIONS: Although more optimization is needed, these data suggest CBD combined with MG may be useful as a novel CIPN therapeutic.
Assuntos
Canabidiol , Doenças do Sistema Nervoso Periférico , Camundongos , Humanos , Masculino , Feminino , Animais , Paclitaxel/toxicidade , Canabidiol/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Modelos Animais de Doenças , Dor/tratamento farmacológicoRESUMO
The monoterpene indole alkaloid (MIA) mitragynine has garnered attention as a potential treatment for pain, opioid use disorder, and opioid withdrawal because of its combined pharmacology at opioid and adrenergic receptors in humans. This alkaloid is unique to Mitragyna speciosa (kratom), which accumulates over 50 MIAs and oxindole alkaloids in its leaves. Quantification of 10 targeted alkaloids from several tissue types and cultivars of⯠M. speciosa revealed that mitragynine accumulation was highest in leaves, followed by stipules and stems, but was absent, along with other alkaloids, in roots. While mitragynine is the predominant alkaloid in mature leaves, juvenile leaves accumulate higher amounts of corynantheidine and speciociliatine. Interestingly, corynantheidine has an inverse relationship with mitragynine accumulation throughout leaf development. Characterization of various cultivars of M. speciosa indicated altered alkaloidal profiles ranging from undetectable to high levels of mitragynine. DNA barcoding and phylogenetic analysis using ribosomal ITSâ¯sequences revealedâ¯polymorphisms leading M. speciosa cultivars having lower mitragynine content to group with other mitragyna species, suggesting interspecific hybridization events. Root transcriptome analysis of low- and high-mitragynine-producing cultivars indicated significant differences in gene expression and revealed allelic variation, further supporting that hybridization events may have impacted the alkaloid profile of M. speciosa.
Assuntos
Mitragyna , Alcaloides de Triptamina e Secologanina , Humanos , Mitragyna/genética , Analgésicos Opioides , Oxindóis , Filogenia , IndóisRESUMO
A chemical library comprising substituted 3-nitroisoxazoles and 3-aminoisoxazoles was prepared and screened for their antileishmanial activity against L. donovani. As compared to Miltefosine, the standard drug used in bioassays, several compounds displayed remarkably better inhibition of the promastigote and amastigote stages of parasites. The in vivo evaluation of a few compounds in a golden hamster model showed significant reduction of the parasite load post treatment via the intraperitoneal route by several compounds. The preliminary pharmacokinetic evaluation of a representative compound 4mf via the oral route, however, indicated high systemic clearance from the body.
RESUMO
A one-pot universal approach for transforming arylamines to aryl halides via reaction with sodium nitrite (NaNO2 ) and N-halosuccinimide (NXS) in DMF at room temperature under metal- and acid-free condition is described. This new protocol that is complementary to the Sandmeyer reaction, is suggested to involve the in situ generation of nitryl halide induce nitrosylation of aryl amine to form the diazo intermediate which is halogenated to furnish the aryl halide.
RESUMO
A metal-free nitration of the α-C-H to carbonyl in propiophenones was achieved with I2/NaNO2 in the presence of an oxidant in dimethyl sulfoxide (DMSO) as the medium. Conversely under similar conditions, reaction of acetophenones produced thiohydroximic acids via a radical-based cascade event which involves oxidative nitration of the α-carbon to a carbonyl followed by Michael addition of the thiomethyl group from DMSO and subsequent rearrangement. Besides DMSO, the scope of the reaction encompasses other symmetrical and unsymmetrical dialkylsulfoxides.
RESUMO
An efficient NaNO2 /I2 -mediated one-pot transformation of Morita-Baylis-Hillman (MBH) acetates into alkyl 3-nitro-5-(aryl/alkyl)isoxazole-4-carboxylates is described. In a cascade event, initial Michael addition of NaNO2 to the MBH acetate furnishes the allylnitro intermediate which undergoes I2 -catalyzed oxidative α-CH nitration of the nitromethyl subunit followed by [3+2] cycloaddition to afford the title compounds. Structural elaborations of these highly substituted isoxazoles by SN Ar reactions and hydrogenolysis allows access to useful products.
Assuntos
Acetatos/química , Iodo/química , Isoxazóis/síntese química , Nitratos/químicaRESUMO
Purely aqueous-phase chemoselective reduction of a wide range of aromatic and aliphatic nitro substrates has been performed in the presence of inexpensive Ni- and Co-based nanoparticle catalysts using hydrazine hydrate as a reducing agent at room temperature. Along with the observed high conversions and selectivities, the studied nanoparticle catalysts also exhibit a high tolerance to other highly reducible groups present in the nitro substrates. The development of these potential chemoselective reduction catalysts also provides a facile route for the synthesis of other industrially important fine chemicals or biologically important compounds, where other highly reducible groups are present in close proximity to the targeted nitro groups.